Invertebrate Immunology: Phylogenetic Perspectives in Immunity . The Insect Host Defense. Jules A. Hoffmann, Charles A. Janeway, Jr., and Shunji Natori, Eds. Landes, Georgetown, TX, 1994 (distributor, CRC Press, Boca Raton, FL). xviii, 197 pp., illus. $89.95 or £74. Molecular Biology Intelligence Unit.

Science ◽  
1995 ◽  
Vol 270 (5236) ◽  
pp. 650-650
Author(s):  
Gary W. Litman
Genetics ◽  
2021 ◽  
Author(s):  
Alexia L Carboni ◽  
Mark A Hanson ◽  
Scott A Lindsay ◽  
Steven A Wasserman ◽  
Bruno Lemaitre

Abstract Cecropins are small helical secreted peptides with antimicrobial activity that are widely distributed among insects. Genes encoding cecropins are strongly induced upon infection, pointing to their role in host-defense. In Drosophila, four cecropin genes clustered in the genome (CecA1, CecA2, CecB and CecC) are expressed upon infection downstream of the Toll and Imd pathways. In this study, we generated a short deletion ΔCecA-C removing the whole cecropin locus. Using the ΔCecA-C deficiency alone or in combination with other antimicrobial peptide (AMP) mutations, we addressed the function of cecropins in the systemic immune response. ΔCecA-C flies were viable and resisted challenge with various microbes as wild-type. However, removing ΔCecA-C in flies already lacking ten other AMP genes revealed a role for cecropins in defense against Gram-negative bacteria and fungi. Measurements of pathogen loads confirm that cecropins contribute to the control of certain Gram-negative bacteria, notably Enterobacter cloacae and Providencia heimbachae. Collectively, our work provides the first genetic demonstration of a role for cecropins in insect host defense, and confirms their in vivo activity primarily against Gram-negative bacteria and fungi. Generation of a fly line (ΔAMP14) that lacks fourteen immune inducible AMPs provides a powerful tool to address the function of these immune effectors in host-pathogen interactions and beyond.


Author(s):  
Cecil E. Hall

The visualization of organic macromolecules such as proteins, nucleic acids, viruses and virus components has reached its high degree of effectiveness owing to refinements and reliability of instruments and to the invention of methods for enhancing the structure of these materials within the electron image. The latter techniques have been most important because what can be seen depends upon the molecular and atomic character of the object as modified which is rarely evident in the pristine material. Structure may thus be displayed by the arts of positive and negative staining, shadow casting, replication and other techniques. Enhancement of contrast, which delineates bounds of isolated macromolecules has been effected progressively over the years as illustrated in Figs. 1, 2, 3 and 4 by these methods. We now look to the future wondering what other visions are waiting to be seen. The instrument designers will need to exact from the arts of fabrication the performance that theory has prescribed as well as methods for phase and interference contrast with explorations of the potentialities of very high and very low voltages. Chemistry must play an increasingly important part in future progress by providing specific stain molecules of high visibility, substrates of vanishing “noise” level and means for preservation of molecular structures that usually exist in a solvated condition.


2020 ◽  
Vol 64 (6) ◽  
pp. 863-866
Author(s):  
Zhe Wu

Abstract The year 2019 marked the fortieth anniversary of the Chinese Society of Biochemistry and Molecular Biology (CSBMB), whose mission is to promote biomolecular research and education in China. The last 40 years have witnessed tremendous growth and achievements in biomolecular research by Chinese scientists and Essays in Biochemistry is delighted to publish this themed issue that focuses on exciting areas within RNA biology, with each review contributed by key experts from China.


Sign in / Sign up

Export Citation Format

Share Document