invertebrate immunology
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hyeogsun Kwon ◽  
Mubasher Mohammed ◽  
Oscar Franzén ◽  
Johan Ankarklev ◽  
Ryan Smith

Mosquito immune cells, known as hemocytes, are integral to cellular and humoral responses that limit pathogen survival and mediate immune priming. However, without reliable cell markers and genetic tools, studies of mosquito immune cells have been limited to morphological observations, leaving several aspects of their biology uncharacterized. Here, we use single-cell RNA sequencing (scRNA-seq) to characterize mosquito immune cells, demonstrating an increased complexity to previously defined prohemocyte, oenocytoid, and granulocyte subtypes. Through functional assays relying on phagocytosis, phagocyte depletion, and RNA-FISH experiments, we define markers to accurately distinguish immune cell subtypes and provide evidence for immune cell maturation and differentiation. In addition, gene-silencing experiments demonstrate the importance of lozenge in defining the mosquito oenocytoid cell fate. Together, our scRNA-seq analysis provides an important foundation for future studies of mosquito immune cell biology and a valuable resource for comparative invertebrate immunology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Teresa Balbi ◽  
Manon Auguste ◽  
Caterina Ciacci ◽  
Laura Canesi

The increasing number of data studies on the biological impact of anthropogenic chemicals in the marine environment, together with the great development of invertebrate immunology, has identified marine bivalves as a key invertebrate group for studies on immunological responses to pollutant exposure. Available data on the effects of contaminants on bivalve immunity, evaluated with different functional and molecular endpoints, underline that individual functional parameters (cellular or humoral) and the expression of selected immune-related genes can distinctly react to different chemicals depending on the conditions of exposure. Therefore, the measurement of a suite of immune biomarkers in hemocytes and hemolymph is needed for the correct evaluation of the overall impact of contaminant exposure on the organism's immunocompetence. Recent advances in -omics technologies are revealing the complexity of the molecular players in the immune response of different bivalve species. Although different -omics represent extremely powerful tools in understanding the impact of pollutants on a key physiological function such as immune defense, the -omics approach has only been utilized in this area of investigation in the last few years. In this work, available information obtained from the application of -omics to evaluate the effects of pollutants on bivalve immunity is summarized. The data shows that the overall knowledge on this subject is still quite limited and that to understand the environmental relevance of any change in immune homeostasis induced by exposure to contaminants, a combination of both functional assays and cutting-edge technology (transcriptomics, proteomics, and metabolomics) is required. In addition, the utilization of metagenomics may explain how the complex interplay between the immune system of bivalves and its associated bacterial communities can be modulated by pollutants, and how this may in turn affect homeostatic processes of the host, host–pathogen interactions, and the increased susceptibility to disease. Integrating different approaches will contribute to knowledge on the mechanism responsible for immune dysfunction induced by pollutants in ecologically and economically relevant bivalve species and further explain their sensitivity to multiple stressors, thus resulting in health or disease.


Author(s):  
Hyeogsun Kwon ◽  
Mubasher Mohammed ◽  
Oscar Franzén ◽  
Johan Ankarklev ◽  
Ryan C. Smith

AbstractMosquito immune cells, known as hemocytes, are integral to cellular and humoral responses that limit pathogen survival and mediate immune priming. However, without reliable cell markers and genetic tools, studies of mosquito immune cells have been limited to morphological observations, leaving several aspects of their biology uncharacterized. Here, we use single-cell RNA sequencing (scRNA-seq) to characterize mosquito immune cells, demonstrating an increased complexity to previously defined prohemocyte, oenocytoid, and granulocyte subtypes. Through functional assays relying on phagocytosis, phagocyte depletion, and RNA-FISH experiments, we define markers to accurately distinguish immune cell subtypes and provide evidence for immune cell maturation and differentiation. In addition, gene-silencing experiments demonstrate the importance of lozenge in defining the mosquito oenocytoid cell fate. Together, our scRNA-seq analysis provides an important foundation for studies of mosquito immune cell biology and a valuable resource for comparative invertebrate immunology.


Author(s):  
Gianmarco Raddi ◽  
Ana Beatriz F Barletta ◽  
Mirjana Efremova ◽  
Jose Luis Ramirez ◽  
Rafael Cantera ◽  
...  

AbstractInsect hemocytes are the functional equivalents of leukocytes and limit the capacity of mosquitoes to transmit human pathogens through phagocytosis, encapsulation, secretion of immune factors and immune priming (1, 2). Here we profile the transcriptomes of 8506 hemocytes of Anopheles gambiae and Aedes aegypti, two important mosquito vectors. Blood feeding, infection with malaria parasites and other immune challenges reveal a previously unknown functional diversity of hemocytes, with different types of granulocytes expressing distinct and evolutionarily conserved subsets of effector genes. A new cell type, which we term megacyte, is defined in Anopheles by a unique transmembrane protein marker (TM7318) and high expression of LPS-Induced TNF-alpha transcription factor 3 (LL3). Knock-down experiments indicate that LL3 mediates hemocyte differentiation during immune priming. We identify two main hemocyte lineages and find evidence of proliferating granulocyte populations. We validate our analysis with RNA in-situ hybridization and highlight the mobilization of sessile hemocytes into circulation upon infection. Our data (https://hemocytes.cellgeni.sanger.ac.uk/) provide the first atlas of medically relevant invertebrate immune cells at single cell resolution. It provides an important resource for invertebrate immunology by identifying cellular events that underpin mosquito immunity to malaria infection.


2020 ◽  
Vol 10 ◽  
Author(s):  
Karsoon Tan ◽  
Hongkuan Zhang ◽  
Leong-Seng Lim ◽  
Hongyu Ma ◽  
Shengkang Li ◽  
...  

2012 ◽  
Vol 279 (1745) ◽  
pp. 4106-4114 ◽  
Author(s):  
C. V. Palmer ◽  
N. Traylor-Knowles

Reef-building corals form bio-diverse marine ecosystems of high societal and economic value, but are in significant decline globally due, in part, to rapid climatic changes. As immunity is a predictor of coral disease and thermal stress susceptibility, a comprehensive understanding of this new field will likely provide a mechanistic explanation for ecological-scale trends in reef declines. Recently, several strides within coral immunology document defence mechanisms that are consistent with those of both invertebrates and vertebrates, and which span the recognition, signalling and effector response phases of innate immunity. However, many of these studies remain discrete and unincorporated into the wider fields of invertebrate immunology or coral biology. To encourage the rapid development of coral immunology, we comprehensively synthesize the current understanding of the field in the context of general invertebrate immunology, and highlight fundamental gaps in our knowledge. We propose a framework for future research that we hope will stimulate directional studies in this emerging field and lead to the elucidation of an integrated network of coral immune mechanisms. Once established, we are optimistic that coral immunology can be effectively applied to pertinent ecological questions, improve current prediction tools and aid conservation efforts.


2008 ◽  
Vol 33 (4) ◽  
pp. 365 ◽  
Author(s):  
Sylvain De Guise ◽  
Michael Goedken ◽  
Brenda Morsey ◽  
Jennifer Maratea ◽  
Inga Sidor ◽  
...  

1997 ◽  
Vol 18 (4) ◽  
pp. 199-200
Author(s):  
Winfried Ahne

Sign in / Sign up

Export Citation Format

Share Document