SPACE EXPLORATION: Private Mission Aims to Give Solar Sails Their Day in the Sun

Science ◽  
2005 ◽  
Vol 308 (5729) ◽  
pp. 1737-1737
Author(s):  
D. Clery
2020 ◽  
Author(s):  
Jingnan Guo ◽  
Robert Wimmer-Schweingruber ◽  
Cary Zeitlin ◽  
Donald Hassler ◽  
Bent Ehresmann

<p>In recent years, space agencies such as ESA, NASA, the Chinese space agency and even private sectors have been planning human deep space exploration programs to the Moon and Mars. This requires a very timely and thorough investigation to better understand the space weather conditions and effects for such deep space activities in order to further develop mitigation strategies against the associated radiation risks on humans in space.</p> <p>Radiation damage in deep space comes mainly from two sources, Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). As an omnipresent background, radiation induced by GCRs, which are modulated by solar activities, may increase the chance of long-term health consequences, such as onset of cancer, cardiovascular diseases, skin atrophy, eye cataract, leukemia, anemia, leucopenia and malfunctions of the central nervous system. On the other hand, intense solar energetic particles (SEPs) can be considered as mightily related to deterministic radiation effects which are of great concern for space exploration. Acute radiation syndrome (ARS) or sickness or poisoning or toxicity is induced after a whole-body exposure to high doses of radiation between at the Gy [J/kg] level. Such events, despite of being rather infrequent, could result in severe damage to humans and equipment and lead to potential failure of the entire mission and therefore should be detected and mitigated as immediately as possible.</p> <p>Under different shielding environment, the intensity and composition of the GCRs/SEPs may vary due to the interactions of primary particles (of different energies and charges) with the surrounding material and the generation of secondaries. Therefore, a precise quantification of the change of particle spectra under different shielding environment (e.g., within a spacecraft in deep space or at Martian surface or even subsurface which might be used for future habitat shielding) using a synergistic combination of measurements and particle-transport models is essential for assessing and predicting the radiation environment therein as well as its changes during different solar activities.</p> <p>Another major challenge in predicting the radiation risks for humans in space is the sudden and sporadic radiation induced by SEPs which can be very intense, dynamic and may vary drastically in time and location. Specifically speaking, the radiation and particle enhancement measured at (or predicted for) Earth’s vicinity may be completely different from of that detected elsewhere in the heliosphere as for a Mars mission, due to the different magnetic connection and distance of Mars (or the cruise spacecraft) from the acceleration and release region of SEPs near the Sun. We highlight the utmost importance of utilizing multi-spacecraft in-situ and remote sensing observations of the Sun and the heliosphere to better understand such dynamic events and their dynamic effects across the heliosphere in particular at locations where human explorations may take place.</p>


Aerospace ◽  
2020 ◽  
Vol 7 (12) ◽  
pp. 180
Author(s):  
Gianluigi Bovesecchi ◽  
Sandra Corasaniti ◽  
Girolamo Costanza ◽  
Fabrizio Paolo Piferi ◽  
Maria Elisa Tata

Space vehicles may be propelled by solar sails exploiting the radiation pressure coming from the sun and applied on their surfaces. This work deals with the adoption of Nickel-Titanium Shape Memory Alloy (SMA) elements in the sail deployment mechanism activated by the Joule Effect, i.e., using the same SMA elements as a resistance within suitable designed electrical circuits. Mathematical models were analyzed for the thermal analysis by implementing algorithms for the evaluation of the temperature trend depending on the design parameters. Several solar sail prototypes were built up and tested with different number, size, and arrangement of the SMA elements, as well as the type of the selected electrical circuit. The main parameters were discussed in the tested configurations and advantages discussed as well.


Author(s):  
Gianluigi Bovesecchi ◽  
Sandra Corasaniti ◽  
Girolamo Costanza ◽  
Fabrizio Paolo Piferi ◽  
Maria Elisa Tata

Space vehicles may be propelled by solar sails exploiting the radiation pressure coming from the sun and applied on their surfaces. This work deals with the adoption of Shape-Memory Alloy (SMA) elements in the sail deployment mechanism activated by the Joule Effect, i.e. using the same SMA elements as a resistance within suitable designed electrical circuits. Mathematical models were analyzed for the thermal analysis by implementing algorithms for the evaluation of the temperature trend depending on the design parameters. Several solar sail prototypes were built up and tested with different number, size and arrangement of the SMA elements, as well as the type of the selected electrical circuit. The main parameters have been discussed in the tested configurations and advantages discussed as well.


2021 ◽  
Author(s):  
Pontus Brandt ◽  
Ralph McNutt ◽  
Elena Provornikova ◽  
James Kinnison ◽  
Carey Lisse ◽  
...  

<p>During its evolution, the Sun and its protective magnetic bubble – the heliosphere - has completed nearly twenty revolutions around the Galactic Core. During this “Solar Journey” it has plowed through widely different interstellar environments that have all shaped the system we live in today. The orders-of-magnitude differences in interstellar properties have had dramatic consequences for the penetration of interstellar material and have affected elemental and isotopic abundances, atmospheric evolution and perhaps even conditions for habitability. As far as we know, only some 60, 000 years ago, the Sun entered what we call the Local Interstellar Cloud (LIC), and in less than 1,900 years the Sun will be entering a very different interstellar environment that will continue to shape its evolution and fate.</p><p>The Interstellar Probe is a pragmatic mission with a possible launch already in the next decade that would explore the heliospheric boundary and how it interacts with the Very Local Interstellar Medium (VLISM) to understand the current state along this Solar Journey and, ultimately understand where our home came from, and where we are going. During its 50-year nominal design life, it would go far beyond where the Voyager missions have gone, out to about 400 astronomical units (au) and likely survive out to 1000 au. Therefore, the Interstellar Probe mission would represent humanity’s first explicit step in to the galaxy and become NASA's boldest step in space exploration.</p><p>When the Voyager missions traversed the heliospheric boundary with their very limited payload it became clear that we are faced with a whole new regime of space physics that is not only decisive for our own heliosphere, but also for understanding the physics of other astrospheres as well. Today we still do not understand the force that is upholding the magnetic shell (the heliosheath) around our heliosphere, or the mechanisms that shield the solar system from galactic cosmic rays, and many other mysteries. Once beyond where the furthest Voyager spacecraft will cease operations (likely at ~170 au), Interstellar Probe would step in to the unknown, traverse the hydrogen wall and the complex magnetic topology at the very edge of the Sun’s sphere of influence, and then directly sample for the first time the interstellar material that has made all of us. There, measurements of the unperturbed gas, plasma, and fields would allow accurate determination of the current state of the LIC and how it affects the global heliosphere. Measurements of unshielded interstellar dust and galactic cosmic rays would provide unprecedented information on stellar and galactic evolution. The physical processes that occur as the solar wind and magnetic field interact with VLISM would also provide the only directly measurable prototypes for understanding the astrospheres surrounding other stars that control the atmospheres and habitability of their exoplanets. All this newly acquired knowledge would then enable an understanding of the current state of the heliosphere and the VLISM, and how they interact, which ultimately can be used to extrapolate the understanding of our system back to the past and into the future.</p><p>At the same time, the outward trajectory is a natural opportunity for exploring one of the ~4,000 Kuiper Belt Objects or ~130 dwarf planets similar to and beyond Pluto and determine the large-scale structure of the circum-solar dust disk to provide the ground truth for planetary system formation in general. Once beyond the obscuring dust, the infrared sky would open a window to early galaxy formation.</p><p>An Interstellar Probe has been discussed and studied since 1960, but the stumbling block has always been propulsion. Now this hurdle has been overcome by the availability of new and larger launch vehicles. An international team of scientists and experts are now in the final year of a NASA-funded study led by The Johns Hopkins University Applied Physics Laboratory (APL) to develop pragmatic example mission concepts for Interstellar Probe with a nominal design lifetime of 50 years. Together with the Space Launch System (SLS) Program Office at NASA’s Marshall Space Flight Center, the team has analyzed dozens of launch configurations and demonstrated that asymptotic speeds in excess of 7.5 au per year can be achieved using existing or near-term propulsion stages with a powered or passive Jupiter Gravity Assist (JGA). These speeds are more than twice that of the fastest escaping man-made spacecraft to date, which is Voyager 1 currently at 3.59 au/year. Launching near the nose direction of the heliosphere, Interstellar Probe would therefore reach the Termination Shock (TS) in less than 12 years and cross the Heliopause into the VLISM after about 16 years from launch.</p><p>In this presentation we provide an overview and update of the study, the science mission concept, the compelling discoveries that await, and the associated example science payload, measurements and operations ensuring a historic data return that would push the boundaries of space exploration by going where no one has gone before.</p><p> </p>


1999 ◽  
Vol 45 (4-9) ◽  
pp. 549-555 ◽  
Author(s):  
M. Leipold
Keyword(s):  
The Sun ◽  

1960 ◽  
Vol 64 (590) ◽  
pp. 102-103 ◽  
Author(s):  
S. W. Greenwood

The Soviet Deputy Premier, Mr. Anastas Mikoyan, is reported to have stated recently that Russia has a missile ready to “visit the Sun.“The Russians have been achieving a notable series of “firsts” in space exploration, and this statement may have led some to speculate on whether they will be the first to reach the Sun.It is, of course, strictly impossible to talk in terms of hitting or reaching the Sun, as it has no solid surface. Indeed the streams of matter and radiation it emits travel out into space beyond the orbit of our planet. However, for practical purposes the Sun is opaque over a diameter of just under a million miles, and this constitutes a generally agreed boundary for purposes of such a study as this.Conditions on the bodies that constitute the Solar system are dominated by the Sun, and this alone would justify the continued examination of its behaviour. Additional justification is provided by the fundamental knowledge of matter obtained through observing the Sun and its radiated energy.


2021 ◽  
Vol 89 (3) ◽  
pp. 235-243
Author(s):  
Coryn A. L. Bailer-Jones
Keyword(s):  
The Sun ◽  

Geophysics ◽  
1961 ◽  
Vol 26 (3) ◽  
pp. 374-393
Author(s):  
Allen J. McMahon

Space exploration is carried on for political, scientific, military, economic, and psychological reasons. Today, sound, practical reasons exist to continue and extend the use of satellites to improve methods of meterology, communications and navigation; to name only a few. Scientific discoveries accruing from sound, well-planned space exploration, and their influence on American industries, can only dimly be forseen. Further exploration effort promises to increase and emphasize the role played by the sun in a wide variety of human activities. The satellite Explorer VI and the space probe Pioneer V have extended communications to ranges of 20,000,000 miles; have increased scientific‐knowledge of the properties of the exosphere with respect to magnetic fields and energetic charged particles. The space between the planets, far from being empty, is repeatedly being disturbed by great clouds of ionized gas called plasma. These are examples of the unusual and intriguing problems awaiting space exploration. Solution of these and unknown problems can best be achieved by continuous and diligent effort. The part played by the United States in space exploration has been excellent to date. The long range pay‐off of such superb effort can scarcely fail to enrich this country, initially, militarily and eventually economicallly.


Author(s):  
Amber L. Dubill ◽  
Grover A. Swartzlander
Keyword(s):  
The Sun ◽  

1966 ◽  
Vol 24 ◽  
pp. 40-43
Author(s):  
O. C. Wilson ◽  
A. Skumanich

Evidence previously presented by one of the authors (1) suggests strongly that chromospheric activity decreases with age in main sequence stars. This tentative conclusion rests principally upon a comparison of the members of large clusters (Hyades, Praesepe, Pleiades) with non-cluster objects in the general field, including the Sun. It is at least conceivable, however, that cluster and non-cluster stars might differ in some fundamental fashion which could influence the degree of chromospheric activity, and that the observed differences in chromospheric activity would then be attributable to the circumstances of stellar origin rather than to age.


Sign in / Sign up

Export Citation Format

Share Document