scholarly journals The nearshore cradle of early vertebrate diversification

Science ◽  
2018 ◽  
Vol 362 (6413) ◽  
pp. 460-464 ◽  
Author(s):  
Lauren Sallan ◽  
Matt Friedman ◽  
Robert S. Sansom ◽  
Charlotte M. Bird ◽  
Ivan J. Sansom

Ancestral vertebrate habitats are subject to controversy and obscured by limited, often contradictory paleontological data. We assembled fossil vertebrate occurrence and habitat datasets spanning the middle Paleozoic (480 million to 360 million years ago) and found that early vertebrate clades, both jawed and jawless, originated in restricted, shallow intertidal-subtidal environments. Nearshore divergences gave rise to body plans with different dispersal abilities: Robust fishes shifted shoreward, whereas gracile groups moved seaward. Fresh waters were invaded repeatedly, but movement to deeper waters was contingent upon form and short-lived until the later Devonian. Our results contrast with the onshore-offshore trends, reef-centered diversification, and mid-shelf clustering observed for benthic invertebrates. Nearshore origins for vertebrates may be linked to the demands of their mobility and may have influenced the structure of their early fossil record and diversification.

2012 ◽  
Vol 12 ◽  
pp. 21-42
Author(s):  
Constance M. Soja

This course is designed so that topics in invertebrate paleontology are discussed in the context of reefs and their change through time. The goal is to help undergraduate students connect modern conservation issues with an enlightened appreciation of the fossil record. Using reefs as the centralizing theme of the course allows key concepts (invertebrate taxonomy and systematics, form and function, evolution, etc.) to be emphasized while exploring the importance of biogenic buildups—and communities that inhabited ecosystems adjacent to those “engines of evolution”—from the past to the present. Students who satisfactorily complete the course achieve seven main learning objectives: They 1) are intimately familiar with the fossil record of marine invertebrate life; 2) understand the evolutionary history of reefs and the ecological roles played by key reef-building invertebrates through time; 3) are able to engage in discussions about paleontological data published in the primary literature; 4) are knowledgeable about the value of paleontological evidence for shedding insights into the decline of ancient and living reefs; 5) gain experience working collaboratively and thinking outside-of-the-box to explore solutions to societal problems linked with the degradation of modern coral reefs; 6) improve scientific writing; and 7) develop a personal style for communicating scientific information to the general public. During classroom discussions, laboratories, a field trip, and museum visit, students explore the anatomy, ecology, evolutionary history, and life-sustaining ecosystem services of shelly animals and associated marine organisms that coexisted in reefs and adjacent habitats past and present. Evolutionary events, including the Cambrian “explosion,” mass extinctions, and gaps in reef existence, are linked to dramatic physical (tectonic) and climatic changes that occurred in Earth's past. Emphasizing evidence for the impact of global change on ancient reef communities alerts students to the value of paleontological data for predicting how modern reefs—and invertebrates living in interconnected marine ecosystems—will respond as the Sixth Extinction gains traction. That topic is the focus of an optional extended study (nine-day field trip offered in alternate years during spring break) of modern and Pleistocene reefs on San Salvador Island, Bahamas.


Paleobiology ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 469-493 ◽  
Author(s):  
Geerat J. Vermeij

AbstractMost evolutionary innovations—power-enhancing phenotypes previously absent in a lineage—have arisen multiple times within major clades. This repetition permits a comparative approach to ask how, where, when, in which clades, and under which circumstances adaptive innovations are acquired and secondarily lost. I use new and literature-based data on the phylogeny, functional morphology, and fossil record of gastropods to explore the acquisition and loss of the siphonal canal and its variations in gastropods. The siphonal indentation, canal, notch, or tube at the front end of the shell is associated in living gastropods with organs that detect chemical signals directionally and at a distance in an anteriorly restricted inhalant stream of water.Conservative estimates indicate that the siphonate condition arose 23 times and was secondarily lost 17 times. Four siphonate clades have undergone prodigious diversification. All siphonate gastropods have a shell whose axis of coiling lies at a low angle above the plane of the aperture (retroaxial condition). In early gastropods, the siphonal canal was short and more or less confined to the apertural plane. Later (mainly Cretaceous and Cenozoic) variations include a dorsally deflected canal, a long canal, and a closed canal. The closed siphonal canal, in which the edges join to form a tube, arose 15 times, all in the adult stages of caenogastropods with determinate growth.Gastropods in which the siphonate condition arose were mobile, bottom-dwelling, microphagous animals. Active predaceous habits became associated with the siphonate condition in the Mesozoic and Cenozoic Purpurinidae-Latrogastropoda clade. Loss of the siphonate condition is associated with nonmarine habits, miniaturization, and especially with a sedentary or slow-moving mode of life.The siphonate condition arose seven times each during the early to middle Paleozoic, the late Paleozoic, and the early to middle Mesozoic, and only once each during the Late Cretaceous and Cenozoic. Well-adapted incumbents prevented most post-Jurassic clades from evolving a siphonal indentation and its associated organs. Dorsally deflected, long, and closed canals are known only from Cretaceous and Cenozoic marine gastropods, and represent improvements in sensation and passive armor.In a discussion of contrasting ecologies of clades that gained and lost the siphonate condition, I argue that macroevolutionary trends in the comings and goings of innovations and clades must incorporate ecological and functional data. Acquisitions of energy-intensive, complex innovations that yield greater power have a greater effect on ecosystems, communities, and their resident clades than do reversals, which generally reflect energy savings.


Paleobiology ◽  
1993 ◽  
Vol 19 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J. John Sepkoski

A comparison is made between compilations of times of origination and extinction of fossil marine animal families published in 1982 and 1992. As a result of ten years of library research, half of the information in the compendia has changed: families have been added and deleted, low-resolution stratigraphic data have been improved, and intervals of origination and extinction have been altered. Despite these changes, apparent macroevolutionary patterns for the entire marine fauna have remained constant. Diversity curves compiled from the two data bases are very similar, with a goodness-of-fit of 99%; the principal difference is that the 1992 curve averages 13% higher than the older curve. Both numbers and percentages of origination and extinction also match well, with fits ranging from 83% to 95%. All major events of radiation and extinction are identical. Therefore, errors in large paleontological data bases and arbitrariness of included taxa are not necessarily impediments to the analysis of pattern in the fossil record, so long as the data are sufficiently numerous.


1992 ◽  
Vol 6 ◽  
pp. 75-75
Author(s):  
Rex E. Crick

The historical and prevailing view regarding the distribution of nautiloid cephalopods is one of cosmopolitanism. There are several objections to such a sweeping view of this major group of marine invertebrates, but only the most significant are addressed here. First, unlike endemism, there is no clear agreement on the meaning of the term cosmopolitanism as used in biogeography. It is thus extremely difficult to gain a historical perspective without access to original data. I have found the term used for as few as four occurrences on four modern landmasses without reference to the paleogeographic relationships of these landmasses. Second, while a few nautiloid groups did compile impressive dispersal statistics, the fossil record clearly reveals that such periods of dispersal were generally brief in geological terms and that the group or groups involved did not colonize all available landmasses. Third, nautiloids were incapable of developing cosmopolitan distributions unless climatic constraints were removed by changes in the global system or by positioning all landmasses within the sub-tropical to tropical latitudes. Since there is no convincing evidence that either event occurred during the 520 million years of nautiloid evolution, it is perhaps more appropriate to view the distribution of nautiloids in terms of the number of landmasses colonized relative to the number of landmasses available for colonization. For nautiloids, the number of landmasses available for colonization was always fewer than the number of landmasses comprising the global paleogeography during any one slice of geologic time. Nautiloid genera restricted to one landmass are considered endemic, a condition exhibited by 65% of the Ordovician and Silurian genera and 81% of the Devonian genera. The maximum number of landmasses colonized by any one nautiloid genus for any one particular period of time was four, two fewer than the six available landmasses.The basic biogeographic unit for nautiloid cephalopods is the genus. This is so because the dispersive potential of nautiloids was low when compared with true pelagic groups such as conodonts. Thus for nautiloid groups capable of dispersal among landmasses, the time needed to effect dispersal and insure permanence in the stratigraphic record was something greater than the longevity of the typical nautiloid species but less than the longevity of most genera. It seems reasonable that the best chance for the occurrence of cosmopolitan nautiloid genera would be at or near the zenith of those groups with attributes most suitable for dispersal. However, the fossil record for nautiloids shows that such periods rarely coincide with the peak intervals of total nautiloid diversity for the Lower and Middle Paleozoic (Arenig, Wenlock and Eifelian) occurring instead during succeeding intervals of time. Such events are generally confined to periods of modal diversity within each group. The lowest percentages of endemic genera and the intervals in which they occurred for the major nautiloid groups are: Ellesmerocerida (57%) and Endocerida (60%) for the Llanvirn, Actinocerida (36%) and Tarphycerida (45%) in the Llandeilo, Orthocerida (52%, 47%, 55%) and Oncocerida (66%, 66%, 75%) for the Caradoc, Ludlow, and Givetian, Discosorida (67%) in the Wenlock and Nautilida (62%) for the Givetian. While the low percentage of endemics for the Actinocerida and Tarphycerida translate into the highest percentages of genera found on more than three separate landmasses (20%), similar percentages of endemics for the Orthocerida do not. Nonendemic members of the Orthocerida are more common to two or three of the available landmasses with approximately 20% occurring in either of these configurations. The fossil record also shows that Devonian nautiloids were the most restricted with the majority occurring on no more than two landmasses.These and other criteria indicate that the distributions of nautiloid cephalopods do not conform to the general perception of cosmopolitanism. At the generic level the group is largely endemic with reasonably large numbers of genera occurring on two or three landmasses with no genus occurring on all available landmasses during a given interval of time. Because of the type and manner of biogeographic barriers imposed on nautiloids, their distributions or patterns tend to have well defined limits with considerable predictive powers.


Paleobiology ◽  
1980 ◽  
Vol 6 (4) ◽  
pp. 373-376 ◽  
Author(s):  
Richard R. Strathmann

In recent articles in this journal Hansen (1980) and Jablonski (1980) discussed the planktonic larval stages of fossil benthic invertebrates and the relation of type of larval development to geographic ranges, nearshore-offshore position, speciation, and extinction. The fossil record provides a view of long term consequences of types of larval development, and the emphasis of these, and other, paleobiological studies was on selection among species which are characterized by different developmental adaptations.


Paleobiology ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 469-493 ◽  
Author(s):  
Geerat J. Vermeij

AbstractMost evolutionary innovations—power-enhancing phenotypes previously absent in a lineage—have arisen multiple times within major clades. This repetition permits a comparative approach to ask how, where, when, in which clades, and under which circumstances adaptive innovations are acquired and secondarily lost. I use new and literature-based data on the phylogeny, functional morphology, and fossil record of gastropods to explore the acquisition and loss of the siphonal canal and its variations in gastropods. The siphonal indentation, canal, notch, or tube at the front end of the shell is associated in living gastropods with organs that detect chemical signals directionally and at a distance in an anteriorly restricted inhalant stream of water.Conservative estimates indicate that the siphonate condition arose 23 times and was secondarily lost 17 times. Four siphonate clades have undergone prodigious diversification. All siphonate gastropods have a shell whose axis of coiling lies at a low angle above the plane of the aperture (retroaxial condition). In early gastropods, the siphonal canal was short and more or less confined to the apertural plane. Later (mainly Cretaceous and Cenozoic) variations include a dorsally deflected canal, a long canal, and a closed canal. The closed siphonal canal, in which the edges join to form a tube, arose 15 times, all in the adult stages of caenogastropods with determinate growth.Gastropods in which the siphonate condition arose were mobile, bottom-dwelling, microphagous animals. Active predaceous habits became associated with the siphonate condition in the Mesozoic and Cenozoic Purpurinidae-Latrogastropoda clade. Loss of the siphonate condition is associated with nonmarine habits, miniaturization, and especially with a sedentary or slow-moving mode of life.The siphonate condition arose seven times each during the early to middle Paleozoic, the late Paleozoic, and the early to middle Mesozoic, and only once each during the Late Cretaceous and Cenozoic. Well-adapted incumbents prevented most post-Jurassic clades from evolving a siphonal indentation and its associated organs. Dorsally deflected, long, and closed canals are known only from Cretaceous and Cenozoic marine gastropods, and represent improvements in sensation and passive armor.In a discussion of contrasting ecologies of clades that gained and lost the siphonate condition, I argue that macroevolutionary trends in the comings and goings of innovations and clades must incorporate ecological and functional data. Acquisitions of energy-intensive, complex innovations that yield greater power have a greater effect on ecosystems, communities, and their resident clades than do reversals, which generally reflect energy savings.


Paleobiology ◽  
1981 ◽  
Vol 7 (2) ◽  
pp. 262-275 ◽  
Author(s):  
Daniel C. Fisher

It has been suggested that certain fossil assemblages consisting of disarticulated and broken remains of small to medium-sized vertebrates (“microvertebrate concentrations”) may be accumulations of incompletely digested material defecated by crocodilians. Experiments on crocodilian digestion show, however, that these reptiles demineralize calcified tissues, frequently leaving intact organic matrices of dentine, cementum, and bones in their feces. Such matrices, even if preserved as fossils, would not resemble most specimens in microvertebrate concentrations. Therefore, crocodilian digestion does not appear to have been an important factor in the formation of these fossil assemblages. Teeth similar to those defecated by crocodilians nevertheless do occur in the fossil record. Such teeth, lacking enamel but often complete in other respects, are interpreted here as having been digested by crocodilians, defecated as demineralized organic matrices, and subsequently remineralized. Enamel, with its extremely low organic content, does not yield a demineralized matrix susceptible to remineralization. A number of recently recognized occurrences of enamel-less teeth attest to the significance of crocodilian digestion as a factor in the taphonomic history of many Mesozoic and Cenozoic fossil vertebrate assemblages.


2013 ◽  
Vol 19 ◽  
pp. 21-50 ◽  
Author(s):  
Seth Finnegan

Energy and nutrients are the fundamental currencies of ecology and changes in energy and nutrient availability are thought to have played an important role in the long-term development of marine ecosystems. However, meaningfully quantifying when, where, and how such changes have occurred has been a difficult and longstanding problem. Here, some of the various lines of evidence that have been brought to bear on this issue in the past two decades are reviewed, particularly those based on the fossil record of benthic invertebrates. This paper focuses on abundance, body size, and metabolism, three distinct but closely interrelated aspects of ecosystem structure that control (or are controlled by) energy fluxes. Each of these is subject to biases and inherent uncertainties that present significant challenges for making inferences from the fossil record, but when carefully controlling for environmental, taphonomic, and methodological variations there are robust trends that can be discerned above the noise. Integrating these different types of data in a single quantitative framework presents additional complications, but coherent patterns emerge from some such analyses. Accurate quantification of energetic trends in the fossil record is difficult but is a worthwhile goal because of its potential to illuminate the energetic dimension of major diversifications, extinctions, and secular ecological-evolutionary trends and link them more directly to their Earth Systems context.


Paleobiology ◽  
2003 ◽  
Vol 29 (1) ◽  
pp. 34-36 ◽  
Author(s):  
Andrew B. Smith

Paleontological data have for long been paramount in providing a long-term perspective on global biodiversity. But all is not as simple and secure as it once seemed. Apparently rapid diversification events recorded in the fossil record have been challenged by new molecular data (Bromham et al. 1999; Wray 2001; reviewed in Smith and Peterson 2002), certain mass extinctions are not as well founded as was previously supposed (Smith et al. 2001; Peters and Foote 2002b), and even such a deeply cherished belief as the long-term trend of increasing diversity through the Phanerozoic is once again under question (Alroy et al. 2001; Peters and Foote 2002a). Why is the fossil record not currently providing us with reliable, clear-cut data, and what can be done to correct the situation?


1994 ◽  
Vol 7 (2) ◽  
pp. 247-265 ◽  
Author(s):  
Herve Philippe ◽  
Ulf Sorhannus ◽  
Anne Baroin ◽  
Roland Perasso ◽  
Francoise Gasse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document