marine animal
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 123)

H-INDEX

33
(FIVE YEARS 6)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 537
Author(s):  
Philippe Savarino ◽  
Emmanuel Colson ◽  
Guillaume Caulier ◽  
Igor Eeckhaut ◽  
Patrick Flammang ◽  
...  

Saponins are plant and marine animal specific metabolites that are commonly considered as molecular vectors for chemical defenses against unicellular and pluricellular organisms. Their toxicity is attributed to their membranolytic properties. Modifying the molecular structures of saponins by quantitative and selective chemical reactions is increasingly considered to tune the biological properties of these molecules (i) to prepare congeners with specific activities for biomedical applications and (ii) to afford experimental data related to their structure–activity relationship. In the present study, we focused on the sulfated saponins contained in the viscera of Holothuria scabra, a sea cucumber present in the Indian Ocean and abundantly consumed on the Asian food market. Using mass spectrometry, we first qualitatively and quantitatively assessed the saponin content within the viscera of H. scabra. We detected 26 sulfated saponins presenting 5 different elemental compositions. Microwave activation under alkaline conditions in aqueous solutions was developed and optimized to quantitatively and specifically induce the desulfation of the natural saponins, by a specific loss of H2SO4. By comparing the hemolytic activities of the natural and desulfated extracts, we clearly identified the sulfate function as highly responsible for the saponin toxicity.


2022 ◽  
Vol 14 (2) ◽  
pp. 339
Author(s):  
Paul Berg ◽  
Deise Santana Maia ◽  
Minh-Tan Pham ◽  
Sébastien Lefèvre

Human activities in the sea, such as intensive fishing and exploitation of offshore wind farms, may impact negatively on the marine mega fauna. As an attempt to control such impacts, surveying, and tracking of marine animals are often performed on the sites where those activities take place. Nowadays, thank to high resolution cameras and to the development of machine learning techniques, tracking of wild animals can be performed remotely and the analysis of the acquired images can be automatized using state-of-the-art object detection models. However, most state-of-the-art detection methods require lots of annotated data to provide satisfactory results. Since analyzing thousands of images acquired during a flight survey can be a cumbersome and time consuming task, we focus in this article on the weakly supervised detection of marine animals. We propose a modification of the patch distribution modeling method (PaDiM), which is currently one of the state-of-the-art approaches for anomaly detection and localization for visual industrial inspection. In order to show its effectiveness and suitability for marine animal detection, we conduct a comparative evaluation of the proposed method against the original version, as well as other state-of-the-art approaches on two high-resolution marine animal image datasets. On both tested datasets, the proposed method yielded better F1 and recall scores (75% recall/41% precision, and 57% recall/60% precision, respectively) when trained on images known to contain no object of interest. This shows a great potential of the proposed approach to speed up the marine animal discovery in new flight surveys. Additionally, such a method could be adopted for bounding box proposals to perform faster and cheaper annotation within a fully-supervised detection framework.


Geology ◽  
2021 ◽  
Author(s):  
A.D. Muscente ◽  
Rowan C. Martindale ◽  
Anirudh Prabhu ◽  
Xiaogang Ma ◽  
Peter Fox ◽  
...  

Ecological observations and paleontological data show that communities of organisms recur in space and time. Various observations suggest that communities largely disappear in extinction events and appear during radiations. This hypothesis, however, has not been tested on a large scale due to a lack of methods for analyzing fossil data, identifying communities, and quantifying their turnover. We demonstrate an approach for quantifying turnover of communities over the Phanerozoic Eon. Using network analysis of fossil occurrence data, we provide the first estimates of appearance and disappearance rates for marine animal paleocommunities in the 100 stages of the Phanerozoic record. Our analysis of 124,605 fossil collections (representing 25,749 living and extinct marine animal genera) shows that paleocommunity disappearance and appearance rates are generally highest in mass extinctions and recovery intervals, respectively, with rates three times greater than background levels. Although taxonomic change is, in general, a fair predictor of ecologic reorganization, the variance is high, and ecologic and taxonomic changes were episodically decoupled at times in the past. Extinction rate, therefore, is an imperfect proxy for ecologic change. The paleocommunity turnover rates suggest that efforts to assess the ecological consequences of the present-day biodiversity crisis should focus on the selectivity of extinctions and changes in the prevalence of biological interactions.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 660
Author(s):  
Andrey B. Imbs ◽  
Ekaterina V. Ermolenko ◽  
Valeria P. Grigorchuk ◽  
Tatiana V. Sikorskaya ◽  
Peter V. Velansky

Marine invertebrates are a paraphyletic group that comprises more than 90% of all marine animal species. Lipids form the structural basis of cell membranes, are utilized as an energy reserve by all marine invertebrates, and are, therefore, considered important indicators of their ecology and biochemistry. The nutritional value of commercial invertebrates directly depends on their lipid composition. The lipid classes and fatty acids of marine invertebrates have been studied in detail, but data on their lipidomes (the profiles of all lipid molecules) remain very limited. To date, lipidomes or their parts are known only for a few species of mollusks, coral polyps, ascidians, jellyfish, sea anemones, sponges, sea stars, sea urchins, sea cucumbers, crabs, copepods, shrimp, and squid. This paper reviews various features of the lipid molecular species of these animals. The results of the application of the lipidomic approach in ecology, embryology, physiology, lipid biosynthesis, and in studies on the nutritional value of marine invertebrates are also discussed. The possible applications of lipidomics in the study of marine invertebrates are considered.


2021 ◽  
Vol 9 (12) ◽  
pp. 2419
Author(s):  
Paulina Pradel ◽  
Nancy Calisto ◽  
Laura Navarro ◽  
Andrés Barriga ◽  
Nicolás Vera ◽  
...  

Carotenoids are highly important in pigmentation, and its content in farmed crustaceans and fish correlates to their market value. These pigments also have a nutritional role in aquaculture where they are routinely added as a marine animal food supplement to ensure fish development and health. However, there is little information about carotenoids obtained from Antarctic bacteria and its use for pigmentation improvement and flesh quality in aquaculture. This study identified carotenoids produced by Antarctic soil bacteria. The pigmented strain (CN7) was isolated on modified Luria–Bertani (LB) media and incubated at 4 °C. This Gram-negative bacillus was identified by 16S rRNA analysis as Flavobacterium segetis. Pigment extract characterization was performed through high-performance liquid chromatography (HPLC) and identification with liquid chromatography–mass spectrometry (LC–MS). HPLC analyses revealed that this bacterium produces several pigments in the carotenoid absorption range (six peaks). LC–MS confirms the presence of one main peak corresponding to lutein or zeaxanthin (an isomer of lutein) and several other carotenoid pigments and intermediaries in a lower quantity. Therefore, we propose CN7 strain as an alternative model to produce beneficial carotenoid pigments with potential nutritional applications in aquaculture.


2021 ◽  
Vol 169 (1) ◽  
Author(s):  
Maria Simonet Roda ◽  
Erika Griesshaber ◽  
Lucia Angiolini ◽  
Claire Rollion-Bard ◽  
Elizabeth M. Harper ◽  
...  

AbstractBiological hard tissues are a rich source of design concepts for the generation of advanced materials. They represent the most important library of information on the evolution of life and its environmental conditions. Organisms produce soft and hard tissues in a bottom-up process, a construction principle that is intrinsic to biologically secreted materials. This process emerged early on in the geological record, with the onset of biological mineralization. The phylum Brachiopoda is a marine animal group that has an excellent and continuous fossil record from the early Cambrian to the Recent. Throughout this time interval, the Brachiopoda secreted phosphate and carbonate shells and populated many and highly diverse marine habitats. This required great flexibility in the adaptation of soft and hard tissues to the different marine environments and living conditions. This review presents, juxtaposes and discusses the main modes of mineral and biopolymer organization in Recent, carbonate shell-producing, brachiopods. We describe shell tissue characteristics for taxa of the orders Rhynchonellida, Terebratulida, Thecideida and Craniida. We highlight modes of calcite and organic matrix assembly at the macro-, micro-, and nano-scales based on results obtained by Electron Backscatter Diffraction, Atomic Force Microscopy, Field Emission Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. We show variation in composite hard tissue organization for taxa with different lifestyles, visualize nanometer-scale calcite assemblies for rhynchonellide and terebratulide fibers, highlight thecideide shell microstructure, texture and chemistry characteristics, and discuss the feasibility to use thecideide shells as archives of proxies for paleoenvironment and paleoclimate reconstructions.


2021 ◽  
Vol 36 (4) ◽  
pp. e2021026
Author(s):  
Ismail Saleh ◽  
Syamsir Syamsir ◽  
Vita Pramaningsih ◽  
Hansen Hansen

Asian green mussel is a marine animal that is used as food by most Indonesians. The mussels are widely cultivated in tropical countries such as Indonesia, Malaysia, Thailand, and other Asian countries. The mussel, known as perna viridis, is marine biota that is a filter feeder in the waters. Therefore, the quality of its meat is greatly influenced by the quality of the sea in its habitat. It is a food that is quite popular with the community but can endanger public health due to the accumulation of heavy metals. This study used a literature review by collecting data related to heavy metal concentrations in green mussel tissue in Indonesia. The results showed that the mussels from several sampling locations still exceeded the maximum acceptable limits of lead (Pb), mercury (Hg), and cadmium (Cd) concentration according to the standards of the food and drug administration of the Republic of Indonesia. Consumption of green mussels can increase health risks if you frequently consume them from cultivating or catching locations that have been contaminated with heavy metals.


2021 ◽  
Author(s):  
A.D. Muscente ◽  
et al.

Additional information on methods and results including supplemental figures and tables.


2021 ◽  
Author(s):  
A.D. Muscente ◽  
et al.

Additional information on methods and results including supplemental figures and tables.


Sign in / Sign up

Export Citation Format

Share Document