Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests

Science ◽  
2019 ◽  
Vol 364 (6444) ◽  
pp. eaaw5139 ◽  
Author(s):  
Peter Wilf ◽  
Kevin C. Nixon ◽  
Maria A. Gandolfo ◽  
N. Rubén Cúneo

The beech-oak family Fagaceae dominates forests from the northern temperate zone to tropical Asia and Malesia, where it reaches its southern limit. We report early Eocene infructescences of Castanopsis, a diverse and abundant fagaceous genus of Southeast Asia, and co-occurring leaves from the 52-million-year-old Laguna del Hunco flora of southern Argentina. The fossil assemblage notably includes many plant taxa that associate with Castanopsis today. The discovery reveals novel Gondwanan history in Fagaceae and the characteristic tree communities of Southeast Asian lower-montane rainforests. The living diaspora associations persisted through Cenozoic climate change and plate movements as the constituent lineages tracked post-Gondwanan mesic biomes over thousands of kilometers, underscoring their current vulnerability to rapid climate change and habitat loss.

The Condor ◽  
2007 ◽  
Vol 109 (2) ◽  
pp. 437-441
Author(s):  
Kelvin S-H. Peh

Abstract An analysis of the elevational distributions of Southeast Asian birds over a 28-year period provides evidence for a potential upward shift for 94 common resident species. These species might have shifted their lower, upper, or both lower and upper boundaries toward a higher elevation in response to climate warming. These upward shifts occurred regardless of habitat specificity, further implicating climate warming, in addition to habitat loss, as a potentially important factor affecting the already imperiled biotas of Southeast Asia.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

The world’s mediterranean-type climate regions (including areas within the Mediterranean, South Africa, Australia, California, and Chile) have long been of interest to biologists by virtue of their extraordinary biodiversity and the appearance of evolutionary convergence between these disparate regions. Comparisons between mediterranean-type climate regions have provided important insights into questions at the cutting edge of ecological, ecophysiological and evolutionary research. These regions, dominated by evergreen shrubland communities, contain many rare and endemic species. Their mild climate makes them appealing places to live and visit and this has resulted in numerous threats to the species and communities that occupy them. Threats include a wide range of factors such as habitat loss due to development and agriculture, disturbance, invasive species, and climate change. As a result, they continue to attract far more attention than their limited geographic area might suggest. This book provides a concise but comprehensive introduction to mediterranean-type ecosystems. As with other books in the Biology of Habitats Series, the emphasis in this book is on the organisms that dominate these regions although their management, conservation, and restoration are also considered.


2021 ◽  
Author(s):  
Roniel Freitas-Oliveira ◽  
Wellington Hannibal ◽  
Matheus S. Lima-Ribeiro ◽  
Levi Carina Terribile
Keyword(s):  

2021 ◽  
Vol 22 (15) ◽  
pp. 7877
Author(s):  
Fahimeh Shahinnia ◽  
Néstor Carrillo ◽  
Mohammad-Reza Hajirezaei

Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world’s population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.


Boreas ◽  
2020 ◽  
Author(s):  
Daniela Müller ◽  
Rik Tjallingii ◽  
Mateusz Płóciennik ◽  
Tomi P. Luoto ◽  
Bartosz Kotrys ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document