scholarly journals De novo design of protein logic gates

Science ◽  
2020 ◽  
Vol 368 (6486) ◽  
pp. 78-84 ◽  
Author(s):  
Zibo Chen ◽  
Ryan D. Kibler ◽  
Andrew Hunt ◽  
Florian Busch ◽  
Jocelynn Pearl ◽  
...  

The design of modular protein logic for regulating protein function at the posttranscriptional level is a challenge for synthetic biology. Here, we describe the design of two-input AND, OR, NAND, NOR, XNOR, and NOT gates built from de novo–designed proteins. These gates regulate the association of arbitrary protein units ranging from split enzymes to transcriptional machinery in vitro, in yeast and in primary human T cells, where they control the expression of the TIM3 gene related to T cell exhaustion. Designed binding interaction cooperativity, confirmed by native mass spectrometry, makes the gates largely insensitive to stoichiometric imbalances in the inputs, and the modularity of the approach enables ready extension to three-input OR, AND, and disjunctive normal form gates. The modularity and cooperativity of the control elements, coupled with the ability to de novo design an essentially unlimited number of protein components, should enable the design of sophisticated posttranslational control logic over a wide range of biological functions.

Science ◽  
2018 ◽  
Vol 362 (6415) ◽  
pp. 705-709 ◽  
Author(s):  
Hao Shen ◽  
Jorge A. Fallas ◽  
Eric Lynch ◽  
William Sheffler ◽  
Bradley Parry ◽  
...  

We describe a general computational approach to designing self-assembling helical filaments from monomeric proteins and use this approach to design proteins that assemble into micrometer-scale filaments with a wide range of geometries in vivo and in vitro. Cryo–electron microscopy structures of six designs are close to the computational design models. The filament building blocks are idealized repeat proteins, and thus the diameter of the filaments can be systematically tuned by varying the number of repeat units. The assembly and disassembly of the filaments can be controlled by engineered anchor and capping units built from monomers lacking one of the interaction surfaces. The ability to generate dynamic, highly ordered structures that span micrometers from protein monomers opens up possibilities for the fabrication of new multiscale metamaterials.


2018 ◽  
Vol 15-16 ◽  
pp. 126-133 ◽  
Author(s):  
Kranthi Raj K ◽  
Pardhasaradhi Mathi ◽  
Mutyala Veera Venkata Vara Prasad ◽  
Mahendran Botlagunta ◽  
Ravi M ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 33 (22) ◽  
pp. no-no
Author(s):  
Emmanuel A. Meyer ◽  
Ruth Brenk ◽  
Ronald K. Castellano ◽  
Maya Furler ◽  
Gerhard Klebe ◽  
...  

ChemBioChem ◽  
2002 ◽  
Vol 3 (11) ◽  
pp. 1137-1141 ◽  
Author(s):  
David A. Carcache ◽  
Simone R. Hörtner ◽  
Andreas Bertogg ◽  
Christoph Binkert ◽  
Daniel Bur ◽  
...  

2005 ◽  
Vol 15 (4) ◽  
pp. 1161-1164 ◽  
Author(s):  
Dominique Potin ◽  
Michele Launay ◽  
Eric Nicolai ◽  
Maud Fabreguette ◽  
Patrice Malabre ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Patricia Bolanos-Palmieri ◽  
Ahmed Kotb ◽  
Heiko Schenk ◽  
Heike Bähre ◽  
Patricia Schroder ◽  
...  

Abstract Background and Aims Tryptophan catabolism is carried out by the enzymes of the kynurenine pathway leading to the de novo synthesis of NAD and the production of a series of bioactive metabolites. Kynurenine 3-Monooxigenase (KMO) is a key component of this pathway and it is one of the enzymes responsible for the degradation of kynurenine. The kynurenine metabolites participate in various cellular processes, so systemic dysregulation of tryptophan metabolism, marked by increased kynurenine in the circulation, has been linked to the onset and severity of a wide range of pathologies, such as chronic kidney disease and associated co-morbidities. Since the enzymes of the kynurenine pathway are expressed in the kidney and the metabolites are cleared in the urine, we aim to describe the effects of changes in tryptophan catabolism on glomerular cells, both in vitro and in vivo. Method Modulation of KMO expression or enzymatic function was performed in a transgenic zebrafish line that allows for the monitoring of a fluorescently labelled protein in the circulation as an indicator for proteinuria. Morpholinos targeting three enzymes of the kynurenine pathway were injected into fish embryos, leading to a knockdown of Afmid, Kmo and Kynu. Additionally, dechorionated larvae were treated with a Kmo inhibitor administered via the embryo rearing media, starting at 48hpf. In all cases at 96hpf, circulating fluorescent protein levels were determined, larval phenotype was scored based on the severity of the edema, and samples were collected for metabolite analysis or fixed and prepared for imaging. Since the kynurenine pathway results in the de novo production of NAD, and the enzyme KMO is located in the outer mitochondrial membrane, cultured murine parietal epithelial cells as well as immortalized human and mouse podocytes were incubated with a KMO inhibitor. Changes in NAD+ and NADH, as well as alterations in the mitochondrial membrane polarization were assessed. Additionally, the oxygen consumption rate was measured in order to determine if KMO inhibition leads to changes in the bioenergetics parameters of glomerular cells in vitro. Results The modification of Afmid, Kmo and Kynu expression levels by morpholino mediated knockdown or inhibition of Kmo lead to the accumulation of upstream kynurenine metabolites in the treated larvae, as was confirmed by mass spectrometry analysis. Following our previous results, alteration of the kynurenine pathway led to the development of yolk sac edema, pericardial effusion and loss of protein from the circulation, accompanied by an enlargement of the Bowman’s space and changes in nephrin expression in the glomerulus of the treated larvae. Under cell culture conditions, KMO inhibition in immortalized podocytes led to a reduction in cell size and focal adhesion proteins (podocalyxin). The NAD+/NADH ratio as well as mitochondrial membrane polarity were also altered. Additionally, changes in spare respiratory capacity, coupling efficiency and proton leak suggest that alterations in the kynurenine pathway might impair the cell’s ability to adapt its bioenergetic profile in response to stress. Conclusion Taken together these results suggest that the modulation of tryptophan catabolism through the kynurenine pathway may contribute to maintaining the structural integrity of glomerular cytoskeleton as well a flexible energy metabolism in podocytes. Moreover, the results from our in vivo model also suggest that imbalances in kynurenine metabolites might ultimately impact the function of the glomerular filtration barrier.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nobuyasu Koga ◽  
Rie Koga ◽  
Gaohua Liu ◽  
Javier Castellanos ◽  
Gaetano T. Montelione ◽  
...  

AbstractWe previously elucidated principles for designing ideal proteins with completely consistent local and non-local interactions which have enabled the design of a wide range of new αβ-proteins with four or fewer β-strands. The principles relate local backbone structures to supersecondary-structure packing arrangements of α-helices and β-strands. Here, we test the generality of the principles by employing them to design larger proteins with five- and six- stranded β-sheets flanked by α-helices. The initial designs were monomeric in solution with high thermal stability, and the nuclear magnetic resonance (NMR) structure of one was close to the design model, but for two others the order of strands in the β-sheet was swapped. Investigation into the origins of this strand swapping suggested that the global structures of the design models were more strained than the NMR structures. We incorporated explicit consideration of global backbone strain into the design methodology, and succeeded in designing proteins with the intended unswapped strand arrangements. These results illustrate the value of experimental structure determination in guiding improvement of de novo design, and the importance of consistency between local, supersecondary, and global tertiary interactions in determining protein topology. The augmented set of principles should inform the design of larger functional proteins.


2010 ◽  
Vol 192 (11) ◽  
pp. 2670-2681 ◽  
Author(s):  
Jie Li ◽  
Jingfang Liu ◽  
Ligang Zhou ◽  
Huadong Pei ◽  
Jian Zhou ◽  
...  

ABSTRACT Primase, encoded by dnaG in bacteria, is a specialized DNA-dependent RNA polymerase that synthesizes RNA primers de novo for elongation by DNA polymerase. Genome sequence analysis has revealed two distantly related dnaG genes, TtdnaG and TtdnaG 2, in the thermophilic bacterium Thermoanaerobacter tengcongensis. Both TtDnaG (600 amino acids) and TtDnaG2 (358 amino acids) exhibit primase activities in vitro at a wide range of temperatures. Interestingly, the template recognition specificities of these two primases are quite distinctive. When trinucleotide-specific templates were tested, TtDnaG initiated RNA primer synthesis efficiently only on templates containing the trinucleotide 5′-CCC-3′, not on the other 63 possible trinucleotides. When the 5′-CCC-3′ sequence was flanked by additional cytosines or guanines, the initiation efficiency of TtDnaG increased remarkably. Significantly, TtDnaG could specifically and efficiently initiate RNA primer synthesis on a limited set of tetranucleotides composed entirely of cytosines and guanines, indicating that TtDnaG initiated RNA primer synthesis more preferably on GC-containing tetranucleotides. In contrast, it seemed that TtDnaG2 had no specific initiation nucleotides, as it could efficiently initiate RNA primer synthesis on all templates tested. The DNA binding affinity of TtDnaG2 was usually 10-fold higher than that of TtDnaG, which might correlate with its high activity but low template specificity. These distinct priming activities and specificities of TtDnaG and TtDnaG2 might shed new light on the diversity in the structure and function of the primases.


2020 ◽  
Vol 10 (4) ◽  
pp. 1159-1166 ◽  
Author(s):  
Swarnali Louha ◽  
David A. Ray ◽  
Kevin Winker ◽  
Travis C. Glenn

The song sparrow, Melospiza melodia, is one of the most widely distributed species of songbirds found in North America. It has been used in a wide range of behavioral and ecological studies. This species’ pronounced morphological and behavioral diversity across populations makes it a favorable candidate in several areas of biomedical research. We have generated a high-quality de novo genome assembly of M. melodia using Illumina short read sequences from genomic and in vitro proximity-ligation libraries. The assembled genome is 978.3 Mb, with a physical coverage of 24.9×, N50 scaffold size of 5.6 Mb and N50 contig size of 31.7 Kb. Our genome assembly is highly complete, with 87.5% full-length genes present out of a set of 4,915 universal single-copy orthologs present in most avian genomes. We annotated our genome assembly and constructed 15,086 gene models, a majority of which have high homology to related birds, Taeniopygia guttata and Junco hyemalis. In total, 83% of the annotated genes are assigned with putative functions. Furthermore, only ∼7% of the genome is found to be repetitive; these regions and other non-coding functional regions are also identified. The high-quality M. melodia genome assembly and annotations we report will serve as a valuable resource for facilitating studies on genome structure and evolution that can contribute to biomedical research and serve as a reference in population genomic and comparative genomic studies of closely related species.


2017 ◽  
Vol 23 ◽  
pp. 2558-2564 ◽  
Author(s):  
Hao Yang ◽  
Jingyu Fu ◽  
Youyun Zhao ◽  
Huiping Shi ◽  
Hua Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document