Iron-based superelastic alloys with near-constant critical stress temperature dependence

Science ◽  
2020 ◽  
Vol 369 (6505) ◽  
pp. 855-858 ◽  
Author(s):  
Ji Xia ◽  
Yuki Noguchi ◽  
Xiao Xu ◽  
Takumi Odaira ◽  
Yuta Kimura ◽  
...  

Shape memory alloys recover their original shape after deformation, making them useful for a variety of specialized applications. Superelastic behavior begins at the critical stress, which tends to increase with increasing temperature for metal shape memory alloys. Temperature dependence is a common feature that often restricts the use of metal shape memory alloys in applications. We discovered an iron-based superelastic alloy system in which the critical stress can be optimized. Our Fe-Mn-Al-Cr-Ni alloys have a controllable temperature dependence that goes from positive to negative, depending on the chromium content. This phenomenon includes a temperature-invariant stress dependence. This behavior is highly desirable for a range of outer space–based and other applications that involve large temperature fluctuations.

2021 ◽  
Vol 272 ◽  
pp. 121712
Author(s):  
Diego Isidoro Heredia Rosa ◽  
Alexander Hartloper ◽  
Albano de Castro e Sousa ◽  
Dimitrios G. Lignos ◽  
Masoud Motavalli ◽  
...  

2021 ◽  
Vol 1161 ◽  
pp. 105-112
Author(s):  
Niklas Sommer ◽  
Gabriel Mienert ◽  
Malte Vollmer ◽  
Christian Lauhoff ◽  
Philipp Krooß ◽  
...  

In the present study, Iron-based FeMnAlNi and Cobalt-based CoNiGa shape-memory alloys (SMA) were processed by laser metal deposition for the first time. The materials show susceptibility to cracking upon processing when unheated substrates are employed. Pre-heating of the substrate materials eliminated cracking completely and enabled robust deposition of thin-wall structures. Microstructural analysis using optical microscopy revealed different microstructural evolution for the two materials considered.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Liberty Deberg ◽  
Masood Taheri Andani ◽  
Milad Hosseinipour ◽  
Mohammad Elahinia

Shape memory alloys (SMAs) provide compact and effective actuation for a variety of mechanical systems. In this work, the distinguished superelastic behavior of these materials is utilized to develop a passive ankle foot orthosis to address the drop foot disability. Design, modeling, and experimental evaluation of an SMA orthosis employed in an ankle foot orthosis (AFO) are presented in this paper. To evaluate the improvements achieved with this new device, a prototype is fabricated and motion analysis is performed on a drop foot patient. Results are presented to demonstrate the performance of the proposed orthosis.


2003 ◽  
Vol 112 ◽  
pp. 205-208 ◽  
Author(s):  
S. Arbab Chirani ◽  
D. Aleong ◽  
C. Dumont ◽  
D. McDowell ◽  
E. Patoor

2020 ◽  
Vol 776 ◽  
pp. 139025
Author(s):  
Victor A. L'vov ◽  
Anna Kosogor ◽  
Serafima I. Palamarchuk ◽  
Gregory Gerstein ◽  
Hans J. Maier

2014 ◽  
Vol 1019 ◽  
pp. 379-384
Author(s):  
M.P. Mashamaite ◽  
Hasani Rich Chauke ◽  
Rosinah Mahlangu ◽  
P.E. Ngoepe

Shape memory alloys (SMAs) are a fascinating group of metals that have two remarkable properties, the shape memory effect and superelasticity. The TiPt structure with the B2 phase has been reported to undergo a reversible displacive transformation to B19 martensite at about 1200K. However, this system could serve in principle as the basis of high-temperature shape memory alloys. Molecular dynamics study of martensitic transformation in platinum titanium alloys was performed to investigate the effect of temperature dependence on B2 and B19 structures at 50 at.%Pt. The NPT ensemble was used to determine the properties of these systems and we found good comparisons with recent experimental work. The temperature dependence of TiPt shows potential martensitic change when B19 is heated to extreme high temperatures of 273K up to 1573K.


Sign in / Sign up

Export Citation Format

Share Document