scholarly journals Intrinsic properties of human germinal center B cells set antigen affinity thresholds

2018 ◽  
Vol 3 (29) ◽  
pp. eaau6598 ◽  
Author(s):  
Kihyuck Kwak ◽  
Nicolas Quizon ◽  
Haewon Sohn ◽  
Avva Saniee ◽  
Javier Manzella-Lapeira ◽  
...  

Protective antibody responses to vaccination or infection depend on affinity maturation, a process by which high-affinity germinal center (GC) B cells are selected on the basis of their ability to bind, gather, and present antigen to T follicular helper (Tfh) cells. Here, we show that human GC B cells have intrinsically higher-affinity thresholds for both B cell antigen receptor (BCR) signaling and antigen gathering as compared with naïve B cells and that these functions are mediated by distinct cellular structures and pathways that ultimately lead to antigen affinity– and Tfh cell–dependent differentiation to plasma cells. GC B cells bound antigen through highly dynamic, actin- and ezrin-rich pod-like structures that concentrated BCRs. The behavior of these structures was dictated by the intrinsic antigen affinity thresholds of GC B cells. Low-affinity antigens triggered continuous engagement and disengagement of membrane-associated antigens, whereas high-affinity antigens induced stable synapse formation. The pod-like structures also mediated affinity-dependent antigen internalization by unconventional pathways distinct from those of naïve B cells. Thus, intrinsic properties of human GC B cells set thresholds for affinity selection.

2017 ◽  
Vol 214 (5) ◽  
pp. 1259-1267 ◽  
Author(s):  
Nike J. Kräutler ◽  
Dan Suan ◽  
Danyal Butt ◽  
Katherine Bourne ◽  
Jana R. Hermes ◽  
...  

Plasma cells (PCs) derived from germinal centers (GCs) secrete the high-affinity antibodies required for long-term serological immunity. Nevertheless, the process whereby GC B cells differentiate into PCs is uncharacterized, and the mechanism underlying the selective PC differentiation of only high-affinity GC B cells remains unknown. In this study, we show that differentiation into PCs is induced among a discrete subset of high-affinity B cells residing within the light zone of the GC. Initiation of differentiation required signals delivered upon engagement with intact antigen. Signals delivered by T follicular helper cells were not required to initiate differentiation but were essential to complete the differentiation process and drive migration of maturing PCs through the dark zone and out of the GC. This bipartite or two-signal mechanism has likely evolved to both sustain protective immunity and avoid autoantibody production.


2019 ◽  
Author(s):  
Gretchen Harms Pritchard ◽  
Akshay T. Krishnamurty ◽  
Jason Netland ◽  
E. Nicole Arroyo ◽  
Kennidy K. Takehara ◽  
...  

SummaryHumoral immunity depends upon the development of long-lived, antibody-secreting plasma cells and rapidly responsive memory B cells (MBCs). The differentiation of high affinity, class-switched MBCs after immunization is critically dependent upon BCL6 expression in germinal center (GC) B cells and CD4+ T follicular helper (Tfh) cells. It is less well understood how more recently described MBC subsets are generated, including the CD73+CD80+ IgM+ MBCs that initially form antibody-secreting effector cells in response to a secondary Plasmodium infection. Herein, we interrogated how BCL6 expression in both B and CD4+ T cells influenced the formation of heterogeneous Plasmodium-specific MBC populations. All Plasmodium-specific CD73+CD80+ MBCs required BCL6 expression for their formation, suggesting germinal center dependence. Further dissection of the CD4+ T and B cell interactions however revealed that somatically hypermutated CD73+CD80+ IgM+ MBCs can form not only in the absence of germinal centers, but also in the absence of CXCR5+ CD4+ Tfh cells.


2020 ◽  
Vol 217 (9) ◽  
Author(s):  
Xin Li ◽  
Liying Gong ◽  
Alexandre P. Meli ◽  
Danielle Karo-Atar ◽  
Weili Sun ◽  
...  

Antigen uptake and presentation by naive and germinal center (GC) B cells are different, with the former expressing even low-affinity BCRs efficiently capture and present sufficient antigen to T cells, whereas the latter do so more efficiently after acquiring high-affinity BCRs. We show here that antigen uptake and processing by naive but not GC B cells depend on Cbl and Cbl-b (Cbls), which consequently control naive B and cognate T follicular helper (Tfh) cell interaction and initiation of the GC reaction. Cbls mediate CD79A and CD79B ubiquitination, which is required for BCR-mediated antigen endocytosis and postendocytic sorting to lysosomes, respectively. Blockade of CD79A or CD79B ubiquitination or Cbls ligase activity is sufficient to impede BCR-mediated antigen processing and GC development. Thus, Cbls act at the entry checkpoint of the GC reaction by promoting naive B cell antigen presentation. This regulation may facilitate recruitment of naive B cells with a low-affinity BCR into GCs to initiate the process of affinity maturation.


2010 ◽  
Vol 207 (2) ◽  
pp. 353-363 ◽  
Author(s):  
Michelle A. Linterman ◽  
Laura Beaton ◽  
Di Yu ◽  
Roybel R. Ramiscal ◽  
Monika Srivastava ◽  
...  

During T cell–dependent responses, B cells can either differentiate extrafollicularly into short-lived plasma cells or enter follicles to form germinal centers (GCs). Interactions with T follicular helper (Tfh) cells are required for GC formation and for selection of somatically mutated GC B cells. Interleukin (IL)-21 has been reported to play a role in Tfh cell formation and in B cell growth, survival, and isotype switching. To date, it is unclear whether the effect of IL-21 on GC formation is predominantly a consequence of this cytokine acting directly on the Tfh cells or if IL-21 directly influences GC B cells. We show that IL-21 acts in a B cell–intrinsic fashion to control GC B cell formation. Mixed bone marrow chimeras identified a significant B cell–autonomous effect of IL-21 receptor (R) signaling throughout all stages of the GC response. IL-21 deficiency profoundly impaired affinity maturation and reduced the proportion of IgG1+ GC B cells but did not affect formation of early memory B cells. IL-21R was required on GC B cells for maximal expression of Bcl-6. In contrast to the requirement for IL-21 in the follicular response to sheep red blood cells, a purely extrafollicular antibody response to Salmonella dominated by IgG2a was intact in the absence of IL-21.


2020 ◽  
Author(s):  
Juhee Pae ◽  
Jonatan Ersching ◽  
Tiago B. R. Castro ◽  
Marta Schips ◽  
Luka Mesin ◽  
...  

AbstractDuring affinity maturation, germinal center (GC) B cells alternate between proliferation and so-matic hypermutation in the dark zone (DZ) and affinity-dependent selection in the light zone (LZ). This anatomical segregation imposes that the vigorous proliferation that allows clonal expansion of positively-selected GC B cells takes place ostensibly in the absence of the signals that triggered selection in the LZ, as if by “inertia.” We find that such inertial cycles specifically require the cell cycle regulator cyclin D3. Cyclin D3 dose-dependently controls the extent to which B cells proliferate in the DZ and is essential for effective clonal expansion of GC B cells in response to strong T follicular helper (Tfh) cell help. Introduction into the Ccnd3 gene of a Burkitt lymphoma-associated gain-of-function mutation (T283A) leads to larger GCs with increased DZ proliferation and, in older mice, to clonal B cell lymphoproliferation, suggesting that the DZ inertial cell cycle program can be coopted by B cells undergoing malignant transformation.


2018 ◽  
Vol 215 (6) ◽  
pp. 1571-1588 ◽  
Author(s):  
Norbert Pardi ◽  
Michael J. Hogan ◽  
Martin S. Naradikian ◽  
Kaela Parkhouse ◽  
Derek W. Cain ◽  
...  

T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.


2020 ◽  
Vol 218 (4) ◽  
Author(s):  
Juhee Pae ◽  
Jonatan Ersching ◽  
Tiago B.R. Castro ◽  
Marta Schips ◽  
Luka Mesin ◽  
...  

During affinity maturation, germinal center (GC) B cells alternate between proliferation and somatic hypermutation in the dark zone (DZ) and affinity-dependent selection in the light zone (LZ). This anatomical segregation imposes that the vigorous proliferation that allows clonal expansion of positively selected GC B cells takes place ostensibly in the absence of the signals that triggered selection in the LZ, as if by “inertia.” We find that such inertial cycles specifically require the cell cycle regulator cyclin D3. Cyclin D3 dose-dependently controls the extent to which B cells proliferate in the DZ and is essential for effective clonal expansion of GC B cells in response to strong T follicular helper (Tfh) cell help. Introduction into the Ccnd3 gene of a Burkitt lymphoma–associated gain-of-function mutation (T283A) leads to larger GCs with increased DZ proliferation and, in older mice, clonal B cell lymphoproliferation, suggesting that the DZ inertial cell cycle program can be coopted by B cells undergoing malignant transformation.


Author(s):  
Akiko Sugimoto-Ishige ◽  
Michishige Harada ◽  
Miho Tanaka ◽  
Tommy Terooatea ◽  
Yu Adachi ◽  
...  

Abstract In T cell-dependent antibody responses, some of the activated B cells differentiate along extrafollicular pathways into low-affinity memory and plasma cells, whereas others are involved in subsequent germinal center (GC) formation in follicular pathways, in which somatic hypermutation and affinity maturation occur. The present study demonstrated that Bim, a proapoptotic BH3-only member of the Bcl-2 family, contributes to the establishment of the B-cell repertoire from early to late stages of immune responses to T cell-dependent antigens. Extrafollicular plasma cells grew in the spleen during the early immune response, but their numbers rapidly declined with the appearance of GC-derived progeny in wild-type mice. By contrast, conditional Bim deficiency in B cells resulted in expansion of extrafollicular IgG1+ antibody-forming cells (AFCs) and this expansion was sustained during the late response, which hampered the formation of GC-derived high-affinity plasma cells in the spleen. Approximately 10% of AFCs in mutant mice contained mutated VH genes; thus, Bim deficiency appears not to impede the selection of high-affinity AFC precursor cells. These results suggest that Bim contributes to the replacement of low-affinity antibody by high-affinity antibody as the immune response progresses.


Sign in / Sign up

Export Citation Format

Share Document