In Vivo-Generated Antigen-Specific Regulatory T Cells Treat Autoimmunity Without Compromising Antibacterial Immune Response

2014 ◽  
Vol 6 (241) ◽  
pp. 241ra78-241ra78 ◽  
Author(s):  
S. Kasagi ◽  
P. Zhang ◽  
L. Che ◽  
B. Abbatiello ◽  
T. Maruyama ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3303-3311 ◽  
Author(s):  
Anne S. De Groot ◽  
Leonard Moise ◽  
Julie A. McMurry ◽  
Erik Wambre ◽  
Laurence Van Overtvelt ◽  
...  

Abstract We have identified at least 2 highly promiscuous major histocompatibility complex class II T-cell epitopes in the Fc fragment of IgG that are capable of specifically activating CD4+CD25HiFoxP3+ natural regulatory T cells (nTRegs). Coincubation of these regulatory T-cell epitopes or “Tregitopes” and antigens with peripheral blood mononuclear cells led to a suppression of effector cytokine secretion, reduced proliferation of effector T cells, and caused an increase in cell surface markers associated with TRegs such as FoxP3. In vivo administration of the murine homologue of the Fc region Tregitope resulted in suppression of immune response to a known immunogen. These data suggest that one mechanism for the immunosuppressive activity of IgG, such as with IVIG, may be related to the activity of regulatory T cells. In this model, regulatory T-cell epitopes in IgG activate a subset of nTRegs that tips the resulting immune response toward tolerance rather than immunogenicity.


2016 ◽  
Vol 197 (5) ◽  
pp. 1708-1719 ◽  
Author(s):  
Jérôme Biton ◽  
Sara Khaleghparast Athari ◽  
Allan Thiolat ◽  
François Santinon ◽  
Delphine Lemeiter ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 297-297
Author(s):  
I. Jedema ◽  
E. Steeneveld ◽  
M. Hoogendoorn ◽  
R. Willemze ◽  
J.H.F. Falkenburg

Abstract By CD40 crosslinking in the presence of cytokines leukemic cells can be modified into good antigen presenting cells (APC) expressing costimulatory molecules CD40, CD80, CD86, and CD83. Previously, primary alloreactive T cell responses from HLA-matched donors have been generated using these leukemic-APC as stimulator cells against acute and chronic myeloid leukemia (AML&CML), and acute and chronic lymphocytic leukemias (ALL&CLL). However, the likelihood of generating a good immune response is highly unpredictable and long-term culture in the presence of high dose IL-2 is needed to enrich for leukemia-reactive T cells. Since the length of the in-vitro culture period has been shown to be inversely correlated with the potential of cells to survive and expand in-vivo, we developed a method facilitating early activation, detection and rapid isolation of leukemia-reactive T cells based on their interferon-gamma (IFNg) secretion using the cytokine capture assay (Miltenyi). In order to enrich for leukemia-reactive T cells and to synchronize the production of IFNg, T cells were first stimulated with the leukemic APC with addition of low dose IL-2 (10 IU/mL) at day 7, resulting in re-entry of the majority of the T cells into a quiescent state after 14 days of culture. Then, the cells were specifically restimulated resulting in synchronized production of IFNg and allowing efficient isolation. Using this method we were able to isolate T cell populations containing a high frequency of leukemia-reactive T cells against CLL, ALL, AML, and CML in 11 donor/patient pairs. Using a CFSE-based cytotoxicity assay (Jedema, Blood2004; 103: 2677) as read-out we were able to demonstrate 20–80% lysis of the primary leukemic blasts by the IFNg+ T cells at very low E/T ratios (3/1-0.3/1) in the majority of the responses, whereas the IFNg- fractions induced only 5–30% lysis. Single cell sorting of the IFNg producing T cells revealed that 15–30% of the T cell clones was capable of exerting minor antigen specific cytotoxic activity against the patient cells in an HLA-restricted fashion. However, in individual cases despite minor antigen disparities between donor and patient no specific anti-leukemia immune response could be detected. Prior to exposure to the leukemic-APC in-vivo activated T cells were observed in the responder T cell population of these donors that contained a high frequency of regulatory T cells defined as CD4+/CD25+, CD4+/CD152+, and CD8+/CD28−. We hypothesized that these regulatory T cells might actively inhibit the induction of an anti-leukemic T cell response. Therefore, in a donor/CLL patient pair, in which we were not able to induce a cytotoxic immune response against the CLL-APC we removed the in-vivo activated T cells from the responder material prior to the initial activation with the CLL-APC. Whereas no cytotoxic activity could be isolated from unmodified responder material (only 1/288 clones was cytotoxic), the IFNg+ T cells isolated from the response induced after depletion of the in-vivo activated T cells was capable of exerting massive cytotoxicity against both the primary CLL (55%) and the CLL-APC (70%). Single cell cloning of this response revealed that 35/129 T cell clones (>25%, 26 CD8+, 9 CD4+) exerted HLA-restricted CLL-specific cytotoxicity. From these results we conclude that the likelihood of generating a primary anti-leukemic immune response is not only determined by the frequency of precursor CTLs, but also by the frequency of inhibitory regulatory T cells at the onset of the immune response.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 591-591
Author(s):  
Rui-Jun Su ◽  
Angela Epp ◽  
Xiaoping Wu ◽  
Neil Josephson

Abstract The development of anti-factor VIII (FVIII) inhibitory antibodies is currently the most significant complication of FVIII replacement therapy in the management of patients with hemophilia A. Infusion of in vitro generated tolerogenic dendritic cells (tDCs) loaded with foreign antigen has been shown to promote durable antigen-specific tolerance in vivo through mechanisms that involve the induction of regulatory T cells. In this study we evaluated the ability of tDCs transduced with a human B domain deleted FVIII transgene-expressing foamy virus (FV) vector to modulate the immune response to human FVIII in both naïve and pre-immunized hemophilia A mice. The tDCs were generated by flow sorting the population of CD11clowCD45RBhigh cells produced in culture of lineage negative bone marrow cells in RPMI1640/10%FBS supplemented with IL-10 and the neural peptides VIP and PACAP38. Expression of co-stimulatory molecules CD80 and CD86 and MHC Class II was negative or low on the generated tDCs and these cells remained un-activated even after stimulation with LPS or transduction by FV vectors. These tDCs produced low levels of IL-6 and TNF-α, and high level of IL-10. Furthermore, co-culture of the vector transduced tDCs with FVIII stimulated effector T cells (Teffs) resulted in decreased proliferation of Teffs and reduced secretion of IFN-γ and IL-2. In the cultures with the transduced tDCs there was also an increase in the number of apoptotic Teffs. Naïve Balb/c hemophilia A mice were treated with 2 weekly infusions of FVIII vector transduced tDCs (tDC-F8), control tDCs (tDCs-Ctrl), or no cells (Neg-Ctrl) prior to being challenged with four weekly intravenous doses of 0.2 μg rhFVIII. Following immunization the total cellularity and weights of spleens harvested from tDC-F8 mice were consistently half that of spleens from either tDC-Ctrl or Neg-Ctrl mice. Furthermore, inhibitor titers in tDC-F8 mice were 60–61% lower than either Neg-Ctrl or tDC-Ctrl mice (p < 0.05 compared to both controls). The regulatory T cell related markers FOXP3, CD25, CD103, CTLA4 and GITR were all up-regulated on splenic CD4+ T cells from tDC-F8 mice and the CD4+ T cell proliferation response to FVIII stimulation in splenocytes from tDC-F8 mice was suppressed by approximately 90%. Moreover, the rate of apoptosis in splenic T cells from tDC-F8 mice was 33% higher than splenic T cells from either Neg-Ctrl or tDC-Ctrl mice. In pre-immunized mice, treatment with 4 weekly infusions of FVIII vector transduced tDCs lowered inhibitor titers by 54% compared to no treatment controls (p < 0.05). In contrast, treatment with untransduced tDCs had no significant effect on the inhibitor titers of pre-immunized mice. Importantly, adoptive transfer of CD4+ T cells from tDC-8 mice produced suppression of the immune response to FVIII in subsequently immunized naïve secondary recipients.. In summary, these data indicate that FVIII vector transduced tDCs are useful in suppressing the immune response to FVIII in hemophilia A mice and suggest that regulatory T cells play a role in the induced immune modulation. More in vivo studies are in progress to confirm the durability of these effects. Future studies will also focus on isolating and characterizing the regulatory T cell populations induced by in vivo administration of transgene modified tDCs.


Sign in / Sign up

Export Citation Format

Share Document