Selegiline and clomipramine effects on lymphocyte subsets, regulatory T cells and sheep red blood cell (SRBC)-induced humoral immune response after in vivo administration in mice

2020 ◽  
Vol 887 ◽  
pp. 173560
Author(s):  
Marianna Szczypka ◽  
Anna Sobieszczańska ◽  
Agnieszka Suszko-Pawłowska ◽  
Magdalena Lis
Planta Medica ◽  
2019 ◽  
Vol 86 (02) ◽  
pp. 160-168 ◽  
Author(s):  
Magdalena Lis ◽  
Marianna Szczypka ◽  
Agnieszka Suszko-Pawłowska ◽  
Anna Sokół-Łętowska ◽  
Alicja Kucharska ◽  
...  

AbstractThis study investigated the effect of hawthorn (Crataegus monogyna) phenolic extract on lymphocyte subsets in the lymphoid organs in nonimmunized mice and on humoral immune response in sheep red blood cell-immunized mice. Hawthorn phenolic extract (50, 100, 200 mg/kg) was administered orally five or ten times. Sheep red blood cells were injected 24 h after administration of the last extract dose. The lymphocyte subsets were assessed 24 and 72 h after the last dose. Humoral immune response was determined 4 and 7 days after immunization. Five doses of the extract decreased the percentage of CD4−CD8− and CD4+ thymocytes but elevated the percentage of CD4+CD8+ and CD8+ thymic cells. The extract increased the total number, percentage, and absolute count of T and B splenocytes. When administered five times, it lowered the percentage of T lymphocytes, but boosted the population of B lymphocytes of mesenteric lymph nodes (after 24 h). However, a rise in the population of T lymphocytes was observed 72 h after five and ten doses. The extract administered ten times elevated the number of plaque-forming cells and total anti-sheep red blood cell hemagglutinin titer but reduced the 2-ME-resistant antibody titer (day 7). At the same time, five doses of the extract increased antibody titers. Considering its impact on lymphocyte subsets and humoral immune response, hawthorn extract may be used as an immunomodulator.


2018 ◽  
Vol 14 (8) ◽  
pp. e1007127 ◽  
Author(s):  
Thi Thu Phuong Tran ◽  
Karsten Eichholz ◽  
Patrizia Amelio ◽  
Crystal Moyer ◽  
Glen R. Nemerow ◽  
...  

Author(s):  
Shannon L. McArdel ◽  
Anne-Sophie Dugast ◽  
Maegan E. Hoover ◽  
Arjun Bollampalli ◽  
Enping Hong ◽  
...  

AbstractRecombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


2013 ◽  
Vol 4 ◽  
Author(s):  
Mongini Claudia ◽  
Hershlik Leticia ◽  
Di Sciullo Paula ◽  
Menay Florencia ◽  
Gravisaco Mar�a ◽  
...  

2014 ◽  
Vol 6 (241) ◽  
pp. 241ra78-241ra78 ◽  
Author(s):  
S. Kasagi ◽  
P. Zhang ◽  
L. Che ◽  
B. Abbatiello ◽  
T. Maruyama ◽  
...  

1999 ◽  
Vol 190 (10) ◽  
pp. 1535-1540 ◽  
Author(s):  
Robert S. Mittler ◽  
Tina S. Bailey ◽  
Kerry Klussman ◽  
Mark D. Trailsmith ◽  
Michael K. Hoffmann

The 4-1BB receptor (CDw137), a member of the tumor necrosis factor receptor superfamily, has been shown to costimulate the activation of T cells. Here we show that anti–mouse 4-1BB monoclonal antibodies (mAbs) inhibit thymus-dependent antibody production by B cells. Injection of anti–4-1BB mAbs into mice being immunized with cellular or soluble protein antigens induced long-term anergy of antigen-specific T cells. The immune response to the type II T cell–independent antigen trinintrophenol-conjugated Ficoll, however, was not suppressed. Inhibition of humoral immunity occurred only when anti–4-1BB mAb was given within 1 wk after immunization. Anti–4-1BB inhibition was observed in mice lacking functional CD8+ T cells, indicating that CD8+ T cells were not required for the induction of anergy. Analysis of the requirements for the anti–4-1BB–mediated inhibition of humoral immunity revealed that suppression could not be adoptively transferred with T cells from anti–4-1BB–treated mice. Transfer of BALB/c splenic T cells from sheep red blood cell (SRBC)-immunized and anti–4-1BB–treated mice together with normal BALB/c B cells into C.B-17 severe combined immunodeficient mice failed to generate an anti-SRBC response. However, B cells from the SRBC-immunized, anti–4-1BB–treated BALB/c mice, together with normal naive T cells, exhibited a normal humoral immune response against SRBC after transfer, demonstrating that SRBC-specific B cells were left unaffected by anti–4-1BB mAbs.


Sign in / Sign up

Export Citation Format

Share Document