Motion Analysis of Fast Flowing Glaciers from Multi-temporal Terrestrial Laser Scanning

2009 ◽  
Vol 2009 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Ellen Schwalbe ◽  
Hans-Gerd Maas
2015 ◽  
Vol 35 ◽  
pp. 92-95 ◽  
Author(s):  
Stefano Crepaldi ◽  
Ye Zhao ◽  
Muriel Lavy ◽  
Gianpiero Amanzio ◽  
Enrico Suozzi ◽  
...  

2017 ◽  
Author(s):  
Sabrina Marx ◽  
Katharina Anders ◽  
Sofia Antonova ◽  
Inga Beck ◽  
Julia Boike ◽  
...  

Abstract. Three-dimensional data acquired by terrestrial laser scanning (TLS) provides an accurate representation of Earth's surface, which is commonly used to detect and quantify topographic changes on a small scale. However, in Arctic permafrost regions the tundra vegetation and the micro-topography have significant effects on the surface representation in the captured dataset. The resulting spatial sampling of the ground is never identical between two TLS surveys. Thus, monitoring of heave and subsidence in the context of permafrost processes are challenging. This study evaluates TLS for quantifying small-scale vertical movements in an area located within the continuous permafrost zone, 50 km north-east of Inuvik, Northwest Territories, Canada. We propose a novel filter strategy, which accounts for spatial sampling effects and identifies TLS points suitable for multi-temporal deformation analyses. Further important prerequisites must be met, such as accurate co-registration of the TLS datasets. We found that if the ground surface is captured by more than one TLS scan position, plausible subsidence rates (up to mm-scale) can be derived; compared to e.g. standard raster-based DEM difference maps which contain change rates strongly affected by sampling effects.


2014 ◽  
Vol 318 ◽  
pp. 304-317 ◽  
Author(s):  
Shruthi Srinivasan ◽  
Sorin C. Popescu ◽  
Marian Eriksson ◽  
Ryan D. Sheridan ◽  
Nian-Wei Ku

Author(s):  
N. Tilly ◽  
D. Kelterbaum ◽  
R. Zeese

High-resolution digital elevation models (DEMs) are useful for the detailed mapping of geomorphological features. Nowadays various sensors and platforms are available to collect 3D data. The presented study compares terrestrial laser scanning (TLS) and low-cost unmanned aerial vehicles (UAV)-based imaging in terms of their usability for capturing small-scale surface structures. In October 2014 and June 2015 measurements with both systems were carried out in an episodically water-filled karst depression under pasture farming in the region of Hohenlohe (Southwest Germany). The overall aims were to establish high-resolution DEMs and monitor changes of the relief caused by dissolution and compare the advantages and drawbacks of both systems for such studies. Due to the short time between the campaigns the clear detection of temporal changes was hardly possible. However, the multi-temporal campaigns allowed an extensive investigation of the usability of both sensors under different environmental conditions. In addition to the remote sensing measurements, the coordinates of several positions in the study area were measured with a RTK-DGPS system as independent reference data sets in both campaigns. The TLS- and UAV-derived DEM heights at these positions were validated against the DGPS-derived heights. The accuracy of the TLS-derived values is supported by low mean differences between TLS and DGPS measurements while the UAV-derived models show a weaker performance. In the future years additional simultaneous measurements with both approaches under more similar vegetation conditions are necessary to detect surface movements. Moreover, by investigating the subsurface the interaction of above and below ground processes might be detected.


2013 ◽  
Vol 38 (11) ◽  
pp. 1330-1338 ◽  
Author(s):  
Alessandro Corsini ◽  
Cristina Castagnetti ◽  
Eleonora Bertacchini ◽  
Riccardo Rivola ◽  
Francesco Ronchetti ◽  
...  

2015 ◽  
Vol 17 (3) ◽  
pp. 296-312 ◽  
Author(s):  
Dirk Hoffmeister ◽  
Guido Waldhoff ◽  
Wolfgang Korres ◽  
Constanze Curdt ◽  
Georg Bareth

Sign in / Sign up

Export Citation Format

Share Document