scholarly journals Terrestrial laser scanning for quantifying small-scale vertical movements of the ground surface in Artic permafrost regions

Author(s):  
Sabrina Marx ◽  
Katharina Anders ◽  
Sofia Antonova ◽  
Inga Beck ◽  
Julia Boike ◽  
...  

Abstract. Three-dimensional data acquired by terrestrial laser scanning (TLS) provides an accurate representation of Earth's surface, which is commonly used to detect and quantify topographic changes on a small scale. However, in Arctic permafrost regions the tundra vegetation and the micro-topography have significant effects on the surface representation in the captured dataset. The resulting spatial sampling of the ground is never identical between two TLS surveys. Thus, monitoring of heave and subsidence in the context of permafrost processes are challenging. This study evaluates TLS for quantifying small-scale vertical movements in an area located within the continuous permafrost zone, 50 km north-east of Inuvik, Northwest Territories, Canada. We propose a novel filter strategy, which accounts for spatial sampling effects and identifies TLS points suitable for multi-temporal deformation analyses. Further important prerequisites must be met, such as accurate co-registration of the TLS datasets. We found that if the ground surface is captured by more than one TLS scan position, plausible subsidence rates (up to mm-scale) can be derived; compared to e.g. standard raster-based DEM difference maps which contain change rates strongly affected by sampling effects.

Author(s):  
N. Tilly ◽  
D. Kelterbaum ◽  
R. Zeese

High-resolution digital elevation models (DEMs) are useful for the detailed mapping of geomorphological features. Nowadays various sensors and platforms are available to collect 3D data. The presented study compares terrestrial laser scanning (TLS) and low-cost unmanned aerial vehicles (UAV)-based imaging in terms of their usability for capturing small-scale surface structures. In October 2014 and June 2015 measurements with both systems were carried out in an episodically water-filled karst depression under pasture farming in the region of Hohenlohe (Southwest Germany). The overall aims were to establish high-resolution DEMs and monitor changes of the relief caused by dissolution and compare the advantages and drawbacks of both systems for such studies. Due to the short time between the campaigns the clear detection of temporal changes was hardly possible. However, the multi-temporal campaigns allowed an extensive investigation of the usability of both sensors under different environmental conditions. In addition to the remote sensing measurements, the coordinates of several positions in the study area were measured with a RTK-DGPS system as independent reference data sets in both campaigns. The TLS- and UAV-derived DEM heights at these positions were validated against the DGPS-derived heights. The accuracy of the TLS-derived values is supported by low mean differences between TLS and DGPS measurements while the UAV-derived models show a weaker performance. In the future years additional simultaneous measurements with both approaches under more similar vegetation conditions are necessary to detect surface movements. Moreover, by investigating the subsurface the interaction of above and below ground processes might be detected.


Author(s):  
N. Tilly ◽  
D. Kelterbaum ◽  
R. Zeese

High-resolution digital elevation models (DEMs) are useful for the detailed mapping of geomorphological features. Nowadays various sensors and platforms are available to collect 3D data. The presented study compares terrestrial laser scanning (TLS) and low-cost unmanned aerial vehicles (UAV)-based imaging in terms of their usability for capturing small-scale surface structures. In October 2014 and June 2015 measurements with both systems were carried out in an episodically water-filled karst depression under pasture farming in the region of Hohenlohe (Southwest Germany). The overall aims were to establish high-resolution DEMs and monitor changes of the relief caused by dissolution and compare the advantages and drawbacks of both systems for such studies. Due to the short time between the campaigns the clear detection of temporal changes was hardly possible. However, the multi-temporal campaigns allowed an extensive investigation of the usability of both sensors under different environmental conditions. In addition to the remote sensing measurements, the coordinates of several positions in the study area were measured with a RTK-DGPS system as independent reference data sets in both campaigns. The TLS- and UAV-derived DEM heights at these positions were validated against the DGPS-derived heights. The accuracy of the TLS-derived values is supported by low mean differences between TLS and DGPS measurements while the UAV-derived models show a weaker performance. In the future years additional simultaneous measurements with both approaches under more similar vegetation conditions are necessary to detect surface movements. Moreover, by investigating the subsurface the interaction of above and below ground processes might be detected.


Author(s):  
Hatice Çiğdem ZAĞRA ◽  
Sibel ÖZDEN

Aim: This study aims to comparatively evaluate the use potential of orthophoto images obtained by terrestrial laser scanning technologies on an urban scale through the "Old Lapseki Finds Life Project" prepared using terrestrial laser scanning technologies and the "Enez Historical City Square Project" prepared using traditional methods. Method: In the study, street improvement projects of 29.210 m2 Lapseki and 29.214 m2 Enez city designed on an urban scale were evaluated and compared with descriptive statistics based on different parameters. Results: In the study, it has been determined that terrestrial laser (point cloud) technologies are 99,9% accurate when compared to traditional methods, save time by 83,08% and reduce workforce by 80%. In addition, it has been determined that terrestrial laser scanning technologies accelerate project processes compared to traditional methods. Conclusion: In this study, the use of laser scanning technologies, which are basically reverse engineering applications, in architectural restoration projects, determination of the current situation and damage, architectural documentation of structures and preparation of three-dimensional models, in terms of efficiency in survey studies are evaluated. It has been observed that orthophoto images obtained by terrestrial laser scanning technologies in architectural relief-restoration-restitution projects have potentials' worth using in different stages of the project.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881413 ◽  
Author(s):  
Xiangyang Xu ◽  
Hao Yang

The complexity of structural materials is increasing the importance of the technology for high accuracy measurement. How to obtain the displacement information of structural feature points accurately and efficiently is the key issue of deformation analysis. In this article, displacement analysis of a composite arched structure is investigated based on the terrestrial laser scanning technique. A new method based on the measured point cloud is proposed to analyze the displacement of surficial points, resulting in not only the displacement size but also the displacement direction. The innovation lies in extracting the displacement information with a network and remapped point cloud, which is called the network method. The displacement map obtained demonstrates that the transverse displacement in the experiment plays an important role in the safety of the structure, which could not be observed and obtained by the surface approximation method. Therefore, the panorama- and pointwise displacement analysis technologies contribute to ensure the safety of increasingly complex constructions.


Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


2016 ◽  
Author(s):  
Michal Gallay ◽  
Zdenko Hochmuth ◽  
Ján Kaňuk ◽  
Jaroslav Hofierka

Abstract. The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organised vertically in different levels. Studying such complex environments traditionally requires tedious mapping, however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterisation and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional scalar fields which is sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a three-dimensional entity therefore a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3D computer graphics which can be applied to study other 3-D geomorphological forms


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1463 ◽  
Author(s):  
Yunfeng Ge ◽  
Huiming Tang ◽  
Xulong Gong ◽  
Binbin Zhao ◽  
Yi Lu ◽  
...  

Deformation monitoring is a powerful tool to understand the formation mechanism of earth fissure hazards, enabling the engineering and planning efforts to be more effective. To assess the evolution characteristics of the Yangshuli earth fissure hazard more completely, terrestrial laser scanning (TLS), a remote sensing technique which is regarded as one of the most promising surveying technologies in geohazard monitoring, was employed to detect the changes to ground surfaces and buildings in small- and large-scales, respectively. Time-series of high-density point clouds were collected through 5 sequential scans from 2014 to 2017 and then pre-processing was performed to filter the noise data of point clouds. A tiny deformation was observed on both the scarp and the walls, based on the local displacement analysis. The relative height differences between the two sides of the scarp increase slowly from 0.169 m to 0.178 m, while no obvious inclining (the maximum tilt reaches just to 0.0023) happens on the two walls, based on tilt measurement. Meanwhile, global displacement analysis indicates that the overall settlement slowly increases for the ground surface, but the regions in the left side of scarp are characterized by a relatively larger vertical displacement than the right. Furthermore, the comparisons of monitoring results on the same measuring line are discussed in this study and TLS monitoring results have an acceptable consistency with the global positioning system (GPS) measurements. The case study shows that the TLS technique can provide an adequate solution in deformation monitoring of earth fissure hazards, with high effectiveness and applicability.


Sign in / Sign up

Export Citation Format

Share Document