The Staphylococcus aureus Alternative Sigma Factor ςB Controls the Environmental Stress Response but Not Starvation Survival or Pathogenicity in a Mouse Abscess Model

1998 ◽  
Vol 180 (23) ◽  
pp. 6082-6089 ◽  
Author(s):  
Pan F. Chan ◽  
Simon J. Foster ◽  
Eileen Ingham ◽  
Mark O. Clements
1998 ◽  
Vol 180 (23) ◽  
pp. 6082-6089 ◽  
Author(s):  
Pan F. Chan ◽  
Simon J. Foster ◽  
Eileen Ingham ◽  
Mark O. Clements

ABSTRACT The role of ςB, an alternative sigma factor ofStaphylococcus aureus, has been characterized in response to environmental stress, starvation-survival and recovery, and pathogenicity. ςB was mainly expressed during the stationary phase of growth and was repressed by 1 M sodium chloride. AsigB insertionally inactivated mutant was created. In stress resistance studies, ςB was shown to be involved in recovery from heat shock at 54°C and in acid and hydrogen peroxide resistance but not in resistance to ethanol or osmotic shock. Interestingly, S. aureus acquired increased acid resistance when preincubated at a sublethal pH 4 prior to exposure to a lethal pH 2. This acid-adaptive response resulting in tolerance was mediated viasigB. However, ςB was not vital for the starvation-survival or recovery mechanisms. ςB does not have a major role in the expression of the global regulator of virulence determinant biosynthesis, staphylococcal accessory regulator (sarA), the production of a number of representative virulence factors, and pathogenicity in a mouse subcutaneous abscess model. However, SarA upregulates sigB expression in a growth-phase-dependent manner. Thus, ςB expression is linked to the processes controlling virulence determinant production. The role of ςB as a major regulator of the stress response, but not of starvation-survival, is discussed.


2018 ◽  
Vol 41 (4) ◽  
pp. 837-849 ◽  
Author(s):  
Ping Zheng ◽  
Jian-Xin Wu ◽  
Sunil Kumar Sahu ◽  
Hong-Yun Zeng ◽  
Li-Qun Huang ◽  
...  

2020 ◽  
Vol 117 (29) ◽  
pp. 17031-17040 ◽  
Author(s):  
Allegra Terhorst ◽  
Arzu Sandikci ◽  
Abigail Keller ◽  
Charles A. Whittaker ◽  
Maitreya J. Dunham ◽  
...  

Aneuploidy, a condition characterized by whole chromosome gains and losses, is often associated with significant cellular stress and decreased fitness. However, how cells respond to the aneuploid state has remained controversial. In aneuploid budding yeast, two opposing gene-expression patterns have been reported: the “environmental stress response” (ESR) and the “common aneuploidy gene-expression” (CAGE) signature, in which many ESR genes are oppositely regulated. Here, we investigate this controversy. We show that the CAGE signature is not an aneuploidy-specific gene-expression signature but the result of normalizing the gene-expression profile of actively proliferating aneuploid cells to that of euploid cells grown into stationary phase. Because growth into stationary phase is among the strongest inducers of the ESR, the ESR in aneuploid cells was masked when stationary phase euploid cells were used for normalization in transcriptomic studies. When exponentially growing euploid cells are used in gene-expression comparisons with aneuploid cells, the CAGE signature is no longer evident in aneuploid cells. Instead, aneuploid cells exhibit the ESR. We further show that the ESR causes selective ribosome loss in aneuploid cells, providing an explanation for the decreased cellular density of aneuploid cells. We conclude that aneuploid budding yeast cells mount the ESR, rather than the CAGE signature, in response to aneuploidy-induced cellular stresses, resulting in selective ribosome loss. We propose that the ESR serves two purposes in aneuploid cells: protecting cells from aneuploidy-induced cellular stresses and preventing excessive cellular enlargement during slowed cell cycles by down-regulating translation capacity.


2017 ◽  
Vol 104 (3) ◽  
pp. 400-411 ◽  
Author(s):  
Roohi Bansal ◽  
Vijjamarri Anil Kumar ◽  
Ritesh Rajesh Sevalkar ◽  
Prabhat Ranjan Singh ◽  
Dibyendu Sarkar

2014 ◽  
Vol 304 (2) ◽  
pp. 177-187 ◽  
Author(s):  
Henrike Pförtner ◽  
Marc S. Burian ◽  
Stephan Michalik ◽  
Maren Depke ◽  
Petra Hildebrandt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document