Biological Engineering and Scale-Up of Industrial Processes

2013 ◽  
Vol 9 ◽  
pp. 1813-1818 ◽  
Author(s):  
Mariëlle M E Delville ◽  
Jan C M van Hest ◽  
Floris P J T Rutjes

Ethyl diazoacetate is a versatile compound in organic chemistry and frequently used on lab scale. Its highly explosive nature, however, severely limits its use in industrial processes. The in-line coupling of microreactor synthesis and separation technology enables the synthesis of this compound in an inherently safe manner, thereby making it available on demand in sufficient quantities. Ethyl diazoacetate was prepared in a biphasic mixture comprising an aqueous solution of glycine ethyl ester, sodium nitrite and dichloromethane. Optimization of the reaction was focused on decreasing the residence time with the smallest amount of sodium nitrite possible. With these boundary conditions, a production yield of 20 g EDA day−1 was achieved using a microreactor with an internal volume of 100 μL. Straightforward scale-up or scale-out of microreactor technology renders this method viable for industrial application.


2020 ◽  
Vol 12 (18) ◽  
pp. 7667
Author(s):  
Alberto Gianoli ◽  
Felipe Bravo

A higher price of CO2 emissions is required to enhance the industrial transition and investment in low-carbon technology. However, the specific mechanisms to tackle the risk of carbon leakage and create an attractive environment for green investment are highly contested in the academic literature. Opposing perspectives regarding the appropriateness and desirability of government intervention in the economy result in different approaches to the decarbonisation of industrial processes. This research builds on existing academic knowledge in the fields of carbon leakage, induced innovation and government intervention to assess the effects of a carbon tax in the industrial cluster of the Port of Rotterdam within the context of a carbon tax on industrial GHG emissions proposed in the Dutch National Climate Agreement. The main finding of this study shows that investment leakage constitutes the main threat instead of carbon leakage in the face of a higher carbon price. Regarding the theory of induced innovation, limited abatement options are available for the industrial cluster and there is the need to scale up existing technologies. Lastly, to both tackle the risk of investment leakage and enhance the scaling up of low-carbon technologies, government intervention in the form of regulations, subsidies and enabling conditions is vital.


2021 ◽  
Vol 22 (3) ◽  
pp. 990
Author(s):  
Micol Santi ◽  
Luca Sancineto ◽  
Vanessa Nascimento ◽  
Juliano Braun Azeredo ◽  
Erika V. M. Orozco ◽  
...  

Biocatalysts represent an efficient, highly selective and greener alternative to metal catalysts in both industry and academia. In the last two decades, the interest in biocatalytic transformations has increased due to an urgent need for more sustainable industrial processes that comply with the principles of green chemistry. Thanks to the recent advances in biotechnologies, protein engineering and the Nobel prize awarded concept of direct enzymatic evolution, the synthetic enzymatic toolbox has expanded significantly. In particular, the implementation of biocatalysts in continuous flow systems has attracted much attention, especially from industry. The advantages of flow chemistry enable biosynthesis to overcome well-known limitations of “classic” enzymatic catalysis, such as time-consuming work-ups and enzyme inhibition, as well as difficult scale-up and process intensifications. Moreover, continuous flow biocatalysis provides access to practical, economical and more sustainable synthetic pathways, an important aspect for the future of pharmaceutical companies if they want to compete in the market while complying with European Medicines Agency (EMA), Food and Drug Administration (FDA) and green chemistry requirements. This review focuses on the most recent advances in the use of flow biocatalysis for the synthesis of active pharmaceutical ingredients (APIs), pharmaceuticals and natural products, and the advantages and limitations are discussed.


Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
RS Barboza ◽  
BR Rocha ◽  
AC Siani ◽  
LMM Valente ◽  
JL Mazzei
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document