scholarly journals Characterization of the Plasmid-Borne Quinolone Resistance Gene qnrB19 in Salmonella enterica Serovar Typhimurium

2009 ◽  
Vol 53 (9) ◽  
pp. 4019-4021 ◽  
Author(s):  
Anna Maria Dionisi ◽  
Claudia Lucarelli ◽  
Slawomir Owczarek ◽  
Ida Luzzi ◽  
Laura Villa

ABSTRACT A qnrB19 gene variant, carried by an IncL/M-like plasmid, was detected in a multidrug Salmonella enterica serovar Typhimurium human strain with reduced susceptibility to ciprofloxacin. The genetic environment around the gene was fully sequenced (20 kb). A large gene cluster, containing the aph, qnrB19, and bla SHV-12-like resistance genes, is inserted inside a Tn3 transposon.

2000 ◽  
Vol 44 (5) ◽  
pp. 1359-1361 ◽  
Author(s):  
Axel Cloeckaert ◽  
Karim Sidi Boumedine ◽  
Geraldine Flaujac ◽  
Hein Imberechts ◽  
Inge D'Hooghe ◽  
...  

ABSTRACT Recently a chromosomal locus possibly specific for Salmonella enterica serovar Typhimurium DT104 has been reported that contains a multiple antibiotic resistance gene cluster. Evidence is provided that Salmonella enterica serovar Agona strains isolated from poultry harbor a similar gene cluster including the newly described floR gene, conferring cross-resistance to chloramphenicol and florfenicol.


2013 ◽  
Vol 19 (13) ◽  
pp. 1494-1506 ◽  
Author(s):  
Mark Shepherd ◽  
Begoña Heras ◽  
Maud E. S. Achard ◽  
Gordon J. King ◽  
M. Pilar Argente ◽  
...  

2002 ◽  
Vol 46 (5) ◽  
pp. 1604-1606 ◽  
Author(s):  
Cheng-Hsun Chiu ◽  
Chishih Chu ◽  
Lin-Hui Su ◽  
Wan-Yu Wu ◽  
Tsu-Lan Wu

ABSTRACT A Salmonella enterica serovar Typhimurium strain that harbored a plasmid carrying a TEM-1-type β-lactamase gene was isolated from the blood and cerebrospinal fluid of an infant with meningitis. This 3.2-kb plasmid was further characterized to be a nonconjugative pGEM series cloning vector containing a foreign insert. The strain was likely laboratory derived and contaminated the environment before it caused the infection.


2008 ◽  
Vol 190 (24) ◽  
pp. 8155-8162 ◽  
Author(s):  
Fiona J. Cooke ◽  
Derek J. Brown ◽  
Maria Fookes ◽  
Derek Pickard ◽  
Alasdair Ivens ◽  
...  

ABSTRACT Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) has caused significant morbidity and mortality in humans and animals for almost three decades. We completed the full DNA sequence of one DT104 strain, NCTC13348, and showed that significant differences between the genome of this isolate and the genome of the previously sequenced strain Salmonella serovar Typhimurium LT2 are due to integrated prophage elements and Salmonella genomic island 1 encoding antibiotic resistance genes. Thirteen isolates of Salmonella serovar Typhimurium DT104 with different pulsed-field gel electrophoresis (PFGE) profiles were analyzed by using multilocus sequence typing (MLST), plasmid profiling, hybridization to a pan-Salmonella DNA microarray, and prophage-based multiplex PCR. All the isolates belonged to a single MLST type, sequence type ST19. Microarray data demonstrated that the gene contents of the 13 DT104 isolates were remarkably conserved. The PFGE DNA fragment size differences in these isolates could be explained to a great extent by differences in the prophage and plasmid contents. Thus, here the nature of variation in different Salmonella serovar Typhimurium DT104 isolates is further defined at the gene and whole-genome levels, illustrating how this phage type evolves over time.


Sign in / Sign up

Export Citation Format

Share Document