Characterization of Salmonella pathogenicity island 1 type III secretion-dependent hemolytic activity in Salmonella enterica serovar Typhimurium

2004 ◽  
Vol 37 (2) ◽  
pp. 65-72 ◽  
Author(s):  
Tsuyoshi Miki ◽  
Nobuhiko Okada ◽  
Yukie Shimada ◽  
Hirofumi Danbara
Microbiology ◽  
2013 ◽  
Vol 159 (Pt_3) ◽  
pp. 446-461 ◽  
Author(s):  
Jin Seok Kim ◽  
Jung Im Jang ◽  
Jeong Seon Eom ◽  
Chang Heon Oh ◽  
Hyeon Guk Kim ◽  
...  

2009 ◽  
Vol 75 (6) ◽  
pp. 1793-1795 ◽  
Author(s):  
Benjamin Bleasdale ◽  
Penelope J. Lott ◽  
Aparna Jagannathan ◽  
Mark P. Stevens ◽  
Richard J. Birtles ◽  
...  

ABSTRACT Free-living amoebae represent a potential reservoir and predator of Salmonella enterica. Through the use of type III secretion system (T3SS) mutants and analysis of transcription of selected T3SS genes, we demonstrated that the Salmonella pathogenicity island 2 is highly induced during S. enterica serovar Typhimurium infection of Acanthamoeba polyphaga and is essential for survival within amoebae.


Vaccine ◽  
2006 ◽  
Vol 24 (37-39) ◽  
pp. 6216-6224 ◽  
Author(s):  
Camille N. Kotton ◽  
Alexander J. Lankowski ◽  
Nathaniel Scott ◽  
David Sisul ◽  
Li Mei Chen ◽  
...  

2000 ◽  
Vol 182 (8) ◽  
pp. 2262-2268 ◽  
Author(s):  
Stephanie C. Tucker ◽  
Jorge E. Galán

ABSTRACT Salmonella enterica encodes a type III secretion system within a pathogenicity island located at centisome 63 that is essential for virulence. All type III secretion systems require the function of a family of low-molecular-weight proteins that aid the secretion process by acting as partitioning factors and/or secretion pilots. One such protein is SicA, which is encoded immediately upstream of the type III secreted proteins SipB and SipC. We found that the absence of SicA results in the degradation of both SipB and SipC. Interestingly, in the absence of SipC, SipB was not only stable but also secreted at wild-type levels in a sicA mutant background, indicating that SicA is not required for SipB secretion. We also found that SicA is capable of binding both SipB and SipC. These results are consistent with a SicA role as a partitioning factor for SipB and SipC, thereby preventing their premature association and degradation. We also found that introduction of a sicA null mutation results in the lack of expression of SopE, another type III-secreted protein. Such an effect was shown to be transcriptional. Introduction of a loss-of-function sipC mutation into the sicAmutant background rescued sopE expression. These results indicate that the effect of sicA on sopEexpression is indirect and most likely exerted through a regulatory factor(s) partitioned by SicA from SipC. These studies therefore describe a surprisingly complex function for the Salmonella enterica type III secretion-associated chaperone SicA.


2009 ◽  
Vol 77 (11) ◽  
pp. 5203-5203 ◽  
Author(s):  
Lionel Le Bourhis ◽  
Joao Gamelas Magalhaes ◽  
Thirumahal Selvanantham ◽  
Leonardo H. Travassos ◽  
Kaoru Geddes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document