scholarly journals Multiple Mutations in Hepatitis C Virus NS5A Domain II Are Required To Confer a Significant Level of Resistance to Alisporivir

2012 ◽  
Vol 56 (10) ◽  
pp. 5113-5121 ◽  
Author(s):  
Jose A. Garcia-Rivera ◽  
Michael Bobardt ◽  
Udayan Chatterji ◽  
Sam Hopkins ◽  
Matthew A. Gregory ◽  
...  

ABSTRACTAlisporivir is the most advanced host-targeting antiviral cyclophilin (Cyp) inhibitor in phase III studies and has demonstrated a great deal of promise in decreasing hepatitis C virus (HCV) viremia in infected patients. In an attempt to further elucidate the mechanism of action of alisporivir, HCV replicons resistant to the drug were selected. Interestingly, mutations constantly arose in domain II of NS5A. To demonstrate that these mutations are responsible for drug resistance, they were reintroduced into the parental HCV genome, and the resulting mutant viruses were tested for replication in the presence of alisporivir or in the absence of the alisporivir target, CypA. We also examined the effect of the mutations on NS5A binding to itself (oligomerization), CypA, RNA, and NS5B. Importantly, the mutations did not affect any of these interactions. Moreover, the mutations did not preserve NS5A-CypA interactions from alisporivir rupture. NS5A mutations alone render HCV only slightly resistant to alisporivir. In sharp contrast, when multiple NS5A mutations are combined, significant resistance was observed. The introduction of multiple mutations in NS5A significantly restored viral replication in CypA knockdown cells. Interestingly, the combination of NS5A mutations renders HCV resistant to all classes of Cyp inhibitors. This study suggests that a combination of multiple mutations in domain II of NS5A rather than a single mutation is required to render HCV significantly and universally resistant to Cyp inhibitors. This in accordance within vivodata that suggest that alisporivir is associated with a low potential for development of viral resistance.

2020 ◽  
Author(s):  
Kaho H. Tisthammer ◽  
Weiyan Dong ◽  
Jeffrey B. Joy ◽  
Pleuni S. Pennings

AbstractStudying in vivo fitness costs of mutations in viruses provides important insights into their evolutionary dynamics, which can help decipher how they adapt to host immune systems and develop drug resistance. However, studying fitness costs in natural populations is difficult, and is often conducted in vitro where evolutionary dynamics differ from in vivo. We aimed to understand in vivo fitness costs of mutations in Hepatitis C virus using next generation sequencing data. Hepatitis C virus is a positive-sense single-stranded RNA virus, and like many RNA viruses, has extremely high mutation and replication rates, making it ideal for studying mutational fitness costs. Using the ‘frequency-based approach’, we estimated genome-wide in vivo mutation frequencies at mutation-selection equilibrium, and inferred fitness costs (selection coefficients) at every genomic position using data from 195 patients. We applied a beta regression model to estimate the effects and the magnitudes of different factors on fitness costs. We generated a high-resolution genome-wide map of fitness costs in Hepatitis C virus for the first time. Our results revealed that costs of nonsynonymous mutations are three times higher than those of synonymous mutations, and mutations at nucleotides A/T have higher costs than those at C/G. Genome location had a modest effect, which is a clear contrast from previously reported in vitro findings, and highlights host immune selection. We inferred the strongest negative selection on the Core and NS5B proteins. We also found widespread natural prevalence of known drug resistance-associated variants in treatment naive patients, despite high fitness costs of these resistance sites. Our results indicate that in vivo evolutionary patterns and associated mutational costs are dynamic and can be virus specific, reinforcing the utility of constructing in vivo fitness cost maps of viral genomes.Author SummaryUnderstanding how viruses evolve within patients is important for combatting viral diseases, yet studying viruses within patients is difficult. Laboratory experiments are often used to understand the evolution of viruses, in place of assessing the evolution in natural populations (patients), but the dynamics will be different. In this study, we aimed to understand the within-patient evolution of Hepatitis C virus, which is an RNA virus that replicates and mutates extremely quickly, by taking advantage of high-throughput next generation sequencing. Here, we describe the evolutionary patterns of Hepatitis C virus from 195 patients: We analyzed mutation frequencies and estimated how costly each mutation was. We also assessed what factors made a mutation more costly, including the costs associated with drug resistance mutations. We were able to create a genome-wide fitness map of within-patient mutations in Hepatitis C virus which proves that, with technological advances, we can deepen our understanding of within-patient viral evolution, which can contribute to develop better treatments and vaccines.


2006 ◽  
Vol 44 (08) ◽  
Author(s):  
P Hilgard ◽  
R Bröring ◽  
M Trippler ◽  
S Viazov ◽  
G Gerken ◽  
...  

2020 ◽  
Vol 30 (4) ◽  
pp. 323-336
Author(s):  
Iqra Almas ◽  
Samia Afzal ◽  
Hamna Imtiaz ◽  
Mahrukh Akbar Shaheen ◽  
Muhammad Daud ◽  
...  

1998 ◽  
Vol 18 (9) ◽  
pp. 5208-5218 ◽  
Author(s):  
Michael Gale ◽  
Collin M. Blakely ◽  
Bart Kwieciszewski ◽  
Seng-Lai Tan ◽  
Michelle Dossett ◽  
...  

ABSTRACT The PKR protein kinase is a critical component of the cellular antiviral and antiproliferative responses induced by interferons. Recent evidence indicates that the nonstructural 5A (NS5A) protein of hepatitis C virus (HCV) can repress PKR function in vivo, possibly allowing HCV to escape the antiviral effects of interferon. NS5A presents a unique tool by which to study the molecular mechanisms of PKR regulation in that mutations within a region of NS5A, termed the interferon sensitivity-determining region (ISDR), are associated with sensitivity of HCV to the antiviral effects of interferon. In this study, we investigated the mechanisms of NS5A-mediated PKR regulation and the effect of ISDR mutations on this regulatory process. We observed that the NS5A ISDR, though necessary, was not sufficient for PKR interactions; we found that an additional 26 amino acids (aa) carboxyl to the ISDR were required for NS5A-PKR complex formation. Conversely, we localized NS5A binding to within PKR aa 244 to 296, recently recognized as a PKR dimerization domain. Consistent with this observation, we found that NS5A from interferon-resistant HCV genotype 1b disrupted kinase dimerization in vivo. NS5A-mediated disruption of PKR dimerization resulted in repression of PKR function and inhibition of PKR-mediated eIF-2α phosphorylation. Introduction of multiple ISDR mutations abrogated the ability of NS5A to bind to PKR in mammalian cells and to inhibit PKR in a yeast functional assay. These results indicate that mutations within the PKR-binding region of NS5A, including those within the ISDR, can disrupt the NS5A-PKR interaction, possibly rendering HCV sensitive to the antiviral effects of interferon. We propose a model of PKR regulation by NS5A which may have implications for therapeutic strategies against HCV.


2012 ◽  
Vol 57 (1) ◽  
pp. 436-444 ◽  
Author(s):  
Naoki Ogura ◽  
Yukiyo Toyonaga ◽  
Izuru Ando ◽  
Kunihiro Hirahara ◽  
Tsutomu Shibata ◽  
...  

ABSTRACTJTK-853, a palm site-binding NS5B nonnucleoside polymerase inhibitor, shows antiviral activityin vitroand in hepatitis C virus (HCV)-infected patients. Here, we report the results of genotypic and phenotypic analyses of resistant variants in 24 HCV genotype 1-infected patients who received JTK-853 (800, 1,200, or 1,600 mg twice daily or 1,200 mg three times daily) in a 3-day monotherapy. Viral resistance in NS5B was investigated using HCV RNA isolated from serum specimens from the patients. At the end of treatment (EOT) with JTK-853, the amino acid substitutions M414T (methionine [M] in position 414 at baseline was replaced with threonine [T] at EOT), C445R (cysteine [C] in position 445 at baseline was replaced with arginine [R] at EOT), Y448C/H (tyrosine [Y] in position 448 at baseline was replaced with cysteine [C] or histidine [H] at EOT), and L466F (leucine [L] in position 466 at baseline was replaced with phenylalanine [F] at EOT), which are known to be typical resistant variants of nonnucleoside polymerase inhibitors, were observed in a clonal sequencing analysis. These substitutions were also selected by a treatment with JTK-853in vitro, and the 50% effective concentration of JTK-853 in the M414T-, C445F-, Y448H-, and L466V-harboring replicons attenuated the susceptibility by 44-, 5-, 6-, and 21-fold, respectively, compared with that in the wild-type replicon (Con1). These findings suggest that amino acid substitutions of M414T, C445R, Y448C/H, and L466F are thought to be viral resistance mutations in HCV-infected patients receiving JTK-853 in a 3-day monotherapy.


Sign in / Sign up

Export Citation Format

Share Document