scholarly journals Pharmacokinetic and Pharmacodynamic Characteristics of a New Pediatric Formulation of Artemether-Lumefantrine in African Children with Uncomplicated Plasmodium falciparum Malaria

2011 ◽  
Vol 55 (9) ◽  
pp. 3994-3999 ◽  
Author(s):  
Abdoulaye A. Djimdé ◽  
Mamadou Tekete ◽  
Salim Abdulla ◽  
John Lyimo ◽  
Quique Bassat ◽  
...  

ABSTRACTThe pharmacokinetic and pharmacodynamic properties of a new pediatric formulation of artemether-lumefantrine, dispersible tablet, were determined within the context of a multicenter, randomized, parallel-group study. In an exploratory approach, we compared a new pediatric formulation with the tablet formulation administered crushed in the treatment of African children with uncomplicatedPlasmodium falciparummalaria. Patients were randomized to 3 different dosing groups (weights of 5 to <15 kg, 15 and <25 kg, and 25 to <35 kg). Treatment was administered twice daily over 3 days. Plasma concentrations of artemether and its active metabolite, dihydroartemisinin (DHA), were determined at 1 and 2 h after the first dose of dispersible (n= 91) and crushed (n= 93) tablets. A full pharmacokinetic profile of lumefantrine was reconstituted on the basis of 310 (dispersible tablet) and 315 (crushed tablet) plasma samples, collected at 6 different time points (1 sample per patient). Dispersible and crushed tablets showed similar artemether and DHA maximum concentrations in plasma (Cmax) for the different body weight groups, with overall means of 175 ± 168 and 190 ± 168 ng/ml, respectively, for artemether and 64.7 ± 58.1 and 63.7 ± 65.0 ng/ml, respectively, for DHA. For lumefantrine, the populationCmaxwere 6.3 μg/ml (dispersible tablet) and 7.7 μg/ml (crushed tablet), whereas the areas under the concentration-time curves from time zero to the time of the last quantifiable plasma concentration measured were 574 and 636 μg · h/ml, respectively. For both formulations, descriptive quintile analyses showed no apparent association between artemether/DHACmaxand parasite clearance time or between the lumefantrineCmaxand the occurrence of adverse events or corrected QT interval changes. The results suggest that the dispersible tablet provides adequate systemic exposure to artemether, DHA, and lumefantrine in African children with uncomplicatedP. falciparummalaria.

2015 ◽  
Vol 59 (8) ◽  
pp. 4366-4374 ◽  
Author(s):  
Quique Bassat ◽  
Bernhards Ogutu ◽  
Abdoulaye Djimde ◽  
Kirstin Stricker ◽  
Kamal Hamed

ABSTRACTSpecially created pediatric formulations have the potential to improve the acceptability, effectiveness, and accuracy of dosing of artemisinin-based combination therapy (ACT) in young children, a patient group that is inherently vulnerable to malaria. Artemether-lumefantrine (AL) Dispersible is a pediatric formulation of AL that is specifically tailored for the treatment of children with uncomplicatedPlasmodium falciparummalaria, offering benefits relating to efficacy, convenience and acceptance, accuracy of dosing, safety, sterility, stability, and a pharmacokinetic profile and bioequivalence similar to those of crushed and intact AL tablets. However, despite being the first pediatric antimalarial to meet World Health Organization (WHO) specifications for use in infants and children who are ≥5 kg in body weight and its inclusion in WHO Guidelines, there are few publications that focus on AL Dispersible. Based on a systematic review of the recent literature, this paper provides a comprehensive overview of the clinical experience with AL Dispersible to date. A randomized, phase 3 study that compared the efficacy and safety of AL Dispersible to those of crushed AL tablets in 899 African children reported high PCR-corrected cure rates at day 28 (97.8% and 98.5% for AL Dispersible and crushed tablets, respectively), and the results of several subanalyses of these data indicate that this activity is observed regardless of patient weight, food intake, and maximum plasma concentrations of artemether or its active metabolite, dihydroartemisinin. These and other clinical data support the continued use of pediatric antimalarial formulations in all children <5 years of age with uncomplicated malaria when accompanied by continued monitoring for the emergence of resistance.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Nicola Gargano ◽  
Lola Madrid ◽  
Giovanni Valentini ◽  
Umberto D'Alessandro ◽  
Tinto Halidou ◽  
...  

ABSTRACT Artemisinin combination therapies are considered the mainstay of malaria treatment, but pediatric-friendly formulations for the treatment of infants are scarce. We sought to evaluate the efficacy and safety of a new dispersible-tablet formulation of dihydroartemisinin/piperaquine phosphate (DHA/PQP) in comparison to the marketed tablet (Eurartesim) in the treatment of infants with uncomplicated Plasmodium falciparum malaria. Reported here are the results of a large phase II, randomized, open-label, multicenter trial conducted in African infants (6 to 12 months of age) from Mozambique, Burkina Faso, The Gambia, the Democratic Republic of the Congo, and Tanzania. Primary efficacy endpoint was the PCR-corrected adequate clinical and parasitological response (ACPR) at day 28. Analysis was performed for the intention-to-treat (ITT) and per-protocol (PP) populations. A total of 201 patients received the dispersible-tablet formulation, and 99 received the conventional one administered as crushed tablets. At day 28, the PCR-corrected ACPRs were 86.9% (ITT) and 98.3% (PP) in the dispersible-tablet group and 84.9% (ITT) and 100% (PP) in the crushed-tablet group. At day 42, these values were 85.9% (ITT) and 96.5% (PP) in the dispersible-tablet group and 82.8% (ITT) and 96.4% (PP) in the crushed-tablet group. The comparison between survival curves for time to new infections showed no statistically significant differences (P = 0.409). The safety and tolerability profile for the two groups was similar in terms of type and frequency of adverse events and was consistent with that expected in African infants with malaria. A standard 3-day treatment with the new dispersible DHA/PQP formulation is as efficacious as the currently used tablet in African infants and has a comparable safety profile. (This trial was registered at ClinicalTrials.gov under registration no. NCT01992900.)


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
James S. McCarthy ◽  
Thomas Rückle ◽  
Suzanne L. Elliott ◽  
Emma Ballard ◽  
Katharine A. Collins ◽  
...  

ABSTRACT Artefenomel and DSM265 are two new compounds that have been shown to be well tolerated and effective when administered as monotherapy malaria treatment. This study aimed to determine the safety, pharmacokinetics, and pharmacodynamics of artefenomel and DSM265 administered in combination to healthy subjects in a volunteer infection study using the Plasmodium falciparum-induced blood-stage malaria model. Thirteen subjects were inoculated with parasite-infected erythrocytes on day 0 and received a single oral dose of artefenomel and DSM265 on day 7. Cohort 1 (n = 8) received 200 mg artefenomel plus 100 mg DSM265, and cohort 2 (n = 5) received 200 mg artefenomel plus 50 mg DSM265. Blood samples were collected to measure parasitemia, gametocytemia, and artefenomel-DSM265 plasma concentrations. There were no treatment-related adverse events. The pharmacokinetic profiles of artefenomel and DSM265 were similar to those of the compounds when administered as monotherapy, suggesting no pharmacokinetic interactions. A reduction in parasitemia occurred in all subjects following treatment (log10 parasite reduction ratios over 48 h [PRR48] of 2.80 for cohort 1 and 2.71 for cohort 2; parasite clearance half-lives of 5.17 h for cohort 1 and 5.33 h for cohort 2). Recrudescence occurred in 5/8 subjects in cohort 1 between days 19 and 28 and in 5/5 subjects in cohort 2 between days 15 and 22. Low-level gametocytemia (1 to 330 female gametocytes/ml) was detected in all subjects from day 14. The results of this single-dosing combination study support the further clinical development of the use of artefenomel and DSM265 in combination as a treatment for falciparum malaria. (This study has been registered at ClinicalTrials.gov under identifier NCT02389348.)


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Johan Ursing ◽  
Lars Rombo ◽  
Staffan Eksborg ◽  
Lena Larson ◽  
Anita Bruvoll ◽  
...  

ABSTRACT Higher chloroquine doses can effectively treat up to 93 to 96% of malaria infections caused by Plasmodium falciparum carrying the resistance-conferring chloroquine resistance transporter (pfcrt) 76T allele. The tolerability of 50 (double the standard dose) and 70 mg/kg total chloroquine doses were assessed in this study. Fifteen 4- to 8-year-old children with uncomplicated malaria were given 10 mg/kg of chloroquine twice daily for 2 days and 5 mg/kg twice daily on the third day. Fifteen additional children were given 5 mg/kg twice daily for 2 more days. Chloroquine concentrations, blood pressure, electrocardiograms (ECGs), parasite density, and adverse events were assessed until day 28. Both dosages were well tolerated, and symptoms resolved by day 3 in parallel with increasing chloroquine concentrations. The median corrected QT (QTc) interval was 12 to 26 ms higher at expected peak concentrations than at day 0 (P < 0.001). Pfcrt 76T was associated with delayed parasite clearance. Day 28 clinical and parasitological responses against P. falciparum with pfcrt 76T were 57% (4/7) and 67% (4/6) after treatment with 50 and 70 mg/kg, respectively. Dosages were well tolerated, and no severe cardiac adverse events occurred. The QTc interval increase was similar to that found in adults taking 25 mg/kg of chloroquine. (This study has been registered at ClinicalTrials.gov under identifier NCT01814423.)


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Madeline Montenegro ◽  
Aaron T. Neal ◽  
Maritza Posada ◽  
Briegel De las Salas ◽  
Tatiana M. Lopera-Mesa ◽  
...  

ABSTRACT High treatment failure rates for Plasmodium falciparum malaria have been reported in Colombia for chloroquine, amodiaquine, and sulfadoxine-pyrimethamine. Artemisinin combination therapies were introduced in 2006 in Colombia, where artemether-lumefantrine (AL) is currently used to treat uncomplicated P. falciparum malaria. Artemisinin (ART) resistance was initially observed in Southeast Asia as an increased parasite clearance time, manifesting as a positive thick-blood smear on day 3 after treatment (D3 positivity). Recently, mutations in the propeller domain of the P. falciparum kelch13 gene (K13 propeller) have been associated with ART resistance. In this study, we surveyed AL effectiveness at D3 and molecular markers of drug resistance among 187 uncomplicated P. falciparum cases in 4 regions of Colombia from June 2014 to July 2015. We found that 3.2% (4/125) of patients showed D3 positivity, 100% (163/163) of isolates carried wild-type K13 propeller alleles, 12.9% (23/178) of isolates had multiple copies of the multidrug resistance 1 gene (mdr1), and 75.8% (113/149) of isolates harbored the double mutant NFSDD mdr1 haplotype (the underlining indicates mutant alleles). These data suggest that ART resistance is not currently suspected in Colombia but that monitoring for lumefantrine resistance and AL failures should continue.


2016 ◽  
Vol 60 (7) ◽  
pp. 3884-3890 ◽  
Author(s):  
Rithea Leang ◽  
Sara E. Canavati ◽  
Nimol Khim ◽  
Lasse S. Vestergaard ◽  
Isabelle Borghini Fuhrer ◽  
...  

ABSTRACTPyronaridine-artesunate efficacy for the treatment of uncomplicatedPlasmodium falciparummalaria was assessed in an area of artemisinin resistance in western Cambodia. This nonrandomized, single-arm, observational study was conducted between 2014 and 2015. Eligible patients were adults or children with microscopically confirmedP. falciparuminfection and fever. Patients received pyronaridine-artesunate once daily for 3 days, dosed according to body weight. The primary outcome was an adequate clinical and parasitological response (ACPR) on day 42, estimated by using Kaplan-Meier analysis, PCR adjusted to exclude reinfection. One hundred twenty-three patients were enrolled. Day 42 PCR-crude ACPRs were 87.2% (95% confidence interval [CI], 79.7 to 92.6%) for the overall study, 89.8% (95% CI, 78.8 to 95.3%) for Pursat, and 82.1% (95% CI, 68.4 to 90.2%) for Pailin. Day 42 PCR-adjusted ACPRs were 87.9% (95% CI, 80.6 to 93.2%) for the overall study, 89.8% (95% CI, 78.8 to 95.3%) for Pursat, and 84.0% (95% CI, 70.6 to 91.7%) for Pailin (P= 0.353 by a log rank test). Day 28 PCR-crude and -adjusted ACPRs were 93.2% (95% CI, 82.9 to 97.4%) and 88.1% (95% CI, 75.3 to 94.5%) for Pursat and Pailin, respectively. A significantly lower proportion of patients achieved day 3 parasite clearance in Pailin (56.4% [95% CI, 43.9 to 69.6%]) than in Pursat (86.7% [95% CI, 76.8 to 93.8%];P= 0.0019). Fever clearance was also extended at Pailin versus Pursat (P< 0.0001). Most patients (95.9% [116/121]) harboredP. falciparumkelch13C580Y mutant parasites. Pyronaridine-artesunate was well tolerated; mild increases in hepatic transaminase levels were consistent with data from previous reports. Pyronaridine-artesunate efficacy was below the World Health Organization-recommended threshold at day 42 for medicines with a long half-life (90%) for first-line treatment ofP. falciparummalaria in western Cambodia despite high efficacy elsewhere in Asia and Africa. (This study has been registered at ClinicalTrials.gov under registration number NCT02389439.)


2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Theerayot Kobasa ◽  
Eldin Talundzic ◽  
Rungniran Sug-aram ◽  
Patcharida Boondat ◽  
Ira F. Goldman ◽  
...  

ABSTRACT Artemisinin-based combination therapy (ACT) is the most effective and widely used treatment for uncomplicated Plasmodium falciparum malaria and is a cornerstone for malaria control and prevention globally. Resistance to artemisinin derivatives has been confirmed in the Greater Mekong Subregion (GMS) and manifests as slow parasite clearance in patients and reduced ring stage susceptibility to artemisinins in survival assays. The P. falciparum kelch13 gene mutations associated with artemisinin-resistant parasites are now widespread in the GMS. We genotyped 277 samples collected during an observational study from 2012 to 2016 from eight provinces in Thailand to identify P. falciparum kelch13 mutations. The results were combined with previously reported genotyping results from Thailand to construct a map illustrating the evolution of P. falciparum kelch13 mutations from 2007 to 2016 in that country. Different mutant alleles were found in strains with different geographical origins. The artemisinin resistance-conferring Y493H and R539T mutations were detected mainly in eastern Thailand (bordering Cambodia), while P574L was found only in western Thailand and R561H only in northwestern Thailand. The C580Y mutation was found across the entire country and was nearing fixation along the Thai-Cambodia border. Overall, the prevalence of artemisinin resistance mutations increased over the last 10 years across Thailand, especially along the Thai-Cambodia border. Molecular surveillance and therapeutic efficacy monitoring should be intensified in the region to further assess the extent and spread of artemisinin resistance.


Sign in / Sign up

Export Citation Format

Share Document