scholarly journals Intrahepatic Administration of Liposomal Amphotericin B (Ambisome) for the Management of a Liver Abscess from Candida albicans in a Preterm Infant

2018 ◽  
Vol 62 (12) ◽  
Author(s):  
Cinzia Auriti ◽  
Maria Paola Ronchetti ◽  
Iliana Bersani ◽  
Fabrizio Gennari ◽  
Fiammetta Piersigilli

ABSTRACT Hepatic fungal abscesses are rare in the neonatal period and often constitute a severe complication of the catheterization of the umbilical vessels. Such life-threatening lesions are observed more frequently in preterm than in other newborn infants and the optimal treatment remains uncertain. We present the case of a preterm neonate, who developed an intrahepatic lesion due to parenteral extravasation, successively contaminated by Candida albicans. Despite the maximal pharmacological therapies, the treatment that led to the definitive resolution of the abscess was the placement of surgical drainage followed by the direct intralesional administration of liposomal amphotericin B (Ambisome), never described in neonates in the literature, which turned out to be a safe and effective approach.

2013 ◽  
Vol 57 (7) ◽  
pp. 3340-3347 ◽  
Author(s):  
Guanpingsheng Luo ◽  
Teclegiorgis Gebremariam ◽  
Hongkyu Lee ◽  
Samuel W. French ◽  
Nathan P. Wiederhold ◽  
...  

ABSTRACTMucormycosis is a life-threatening fungal infection almost uniformly affecting diabetics in ketoacidosis or other forms of acidosis and/or immunocompromised patients. Inhalation ofMucoralesspores provides the most common natural route of entry into the host. In this study, we developed an intratracheal instillation model of pulmonary mucormycosis that hematogenously disseminates into other organs using diabetic ketoacidotic (DKA) or cyclophosphamide-cortisone acetate-treated mice. Various degrees of lethality were achieved for the DKA or cyclophosphamide-cortisone acetate-treated mice when infected with different clinical isolates ofMucorales. In both DKA and cyclophosphamide-cortisone acetate models, liposomal amphotericin B (LAmB) or posaconazole (POS) treatments were effective in improving survival, reducing lungs and brain fungal burdens, and histologically resolving the infection compared with placebo. These models can be used to study mechanisms of infection, develop immunotherapeutic strategies, and evaluate drug efficacies against life-threateningMucoralesinfections.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Seyedmojtaba Seyedmousavi ◽  
Johan W. Mouton ◽  
Willem J. G. Melchers ◽  
Paul E. Verweij

ABSTRACT Using an immunocompetent murine model of invasive aspergillosis (IA), we previously reported that the efficacy of liposomal amphotericin B (L-AmB) (Ambisome) is not hampered by the presence of azole resistance mutations in Aspergillus fumigatus (S. Seyedmousavi, W. J. G. Melchers, J. W. Mouton, and P. E. Verweij, Antimicrob Agents Chemother 57:1866–1871, 2013, https://doi.org/10.1128/AAC.02226-12 ). We here investigated the role of immune suppression, i.e., neutropenia and steroid treatment, in L-AmB efficacy in mice infected with wild-type (WT) A. fumigatus and with azole-resistant A. fumigatus harboring a TR34/L98H mutation in the cyp-51A gene. Survival of treated animals at day 14 in both immunosuppressed models was significantly better than that of nontreated controls. A dose-response relationship was observed that was independent of the azole-resistant mechanism and the immunosuppression method used. In the neutropenic model, 100% survival was reached at an L-AmB dose of 16 mg/kg of body weight for the WT strain and the TR34/L98H isolate. In the steroid-treated group, 90.9% survival and 100% survival were achieved for the WT isolate and the TR34/L98H isolate with an L-AmB dose of 16 mg/kg, respectively. The 50% effective dose (ED50) was 1.40 mg/kg (95% confidence interval [CI], 0.66 to 3.00 mg/kg) for the WT isolate and 1.92 mg/kg (95% CI, 0.60 to 6.17 mg/kg) for the TR34/L98H isolate in the neutropenic model and was 2.40 mg/kg (95% CI, 1.93 to 2.97 mg/kg) for the WT isolate and 2.56 mg/kg (95% CI, 1.43 to 4.56 mg/kg) for the TR34/L98H isolate in the steroid-treated group. Overall, there were no significant differences between the two different immunosuppressed conditions in the efficacy of L-AmB against the wild-type and azole-resistant isolates (P > 0.9). However, the required L-AmB exposure was significantly higher than that seen in the immunocompetent model.


2014 ◽  
Vol 58 (8) ◽  
pp. 4953-4956 ◽  
Author(s):  
Maria Simitsopoulou ◽  
Daniela Kyrpitzi ◽  
Aristea Velegraki ◽  
Thomas J. Walsh ◽  
Emmanuel Roilides

ABSTRACTThe antibiofilm activities of caspofungin, anidulafungin, micafungin, and liposomal amphotericin B were studied againstCandida lusitaniae,Candida guilliermondii, and aCandida albicanscontrol strain. While anidulafungin and micafungin (0.007 to 2,048 mg/liter) showed reduced activity against biofilms of both test species, caspofungin displayed concentration-dependent antibiofilm activity, reaching complete and persistent eradication at concentrations achievable during lock therapy (512 to 2,048 mg/liter,P< 0.05). Although liposomal amphotericin B strongly inhibited mature biofilms, it possessed lower antibiofilm activity than caspofungin (P< 0.05).


Sign in / Sign up

Export Citation Format

Share Document