scholarly journals Inhibitors of Endoplasmic Reticulum α-Glucosidases Potently Suppress Hepatitis C Virus Virion Assembly and Release

2010 ◽  
Vol 55 (3) ◽  
pp. 1036-1044 ◽  
Author(s):  
Xiaowang Qu ◽  
Xiaoben Pan ◽  
Jessica Weidner ◽  
Wenquan Yu ◽  
Dominic Alonzi ◽  
...  

ABSTRACTα-Glucosidases I and II are endoplasmic reticulum-resident enzymes that are essential for N-linked glycan processing and subsequent proper folding of glycoproteins. In this report, we first demonstrate that downregulation of the expression of α-glucosidase I, II, or both in Huh7.5 cells by small hairpin RNA technology inhibited the production of hepatitis C virus (HCV). In agreement with the essential role of α-glucosidases in HCV envelope glycoprotein processing and folding, treatment of HCV-infected cells with a panel of imino sugar derivatives, which are competitive inhibitors of α-glucosidases, did not affect intracellular HCV RNA replication and nonstructural protein expression but resulted in the inhibition of glycan processing and subsequent degradation of HCV E2 glycoprotein. As a consequence, HCV virion assembly and secretion were inhibited. In searching for imino sugars with better antiviral activity, we found that a novel imino sugar, PBDNJ0804, had a superior ability to inhibit HCV virion assembly and secretion. In summary, we demonstrated that glucosidases are important host factor-based antiviral targets for HCV infection. The low likelihood of drug-resistant virus emergence and potent antiviral efficacy of the novel glucosidase inhibitor hold promise for its development as a therapeutic agent for the treatment of chronic hepatitis C.

2010 ◽  
Vol 6 (12) ◽  
pp. e1001233 ◽  
Author(s):  
Vlastimil Jirasko ◽  
Roland Montserret ◽  
Ji Young Lee ◽  
Jérôme Gouttenoire ◽  
Darius Moradpour ◽  
...  

2005 ◽  
Vol 79 (2) ◽  
pp. 896-909 ◽  
Author(s):  
Nicole Appel ◽  
Ulrike Herian ◽  
Ralf Bartenschlager

ABSTRACT Studies of Hepatitis C virus (HCV) RNA replication have become possible with the development of subgenomic replicons. This system allows the functional analysis of the essential components of the viral replication complex, which so far are poorly defined. In the present study we wanted to investigate whether lethal mutations in HCV nonstructural genes can be rescued by trans-complementation. Therefore, a series of replicon RNAs carrying mutations in NS3, NS4B, NS5A, and NS5B that abolish replication were transfected into Huh-7 hepatoma cells harboring autonomously replicating helper RNAs. Similar to data described for the Bovine viral diarrhea virus (C. W. Grassmann, O. Isken, N. Tautz, and S. E. Behrens, J. Virol. 75:7791-7802, 2001), we found that only NS5A mutants could be efficiently rescued. There was no evidence for RNA recombination between helper and mutant RNAs, and we did not observe reversions in the transfected mutants. Furthermore, we established a transient complementation assay based on the cotransfection of helper and mutant RNAs. Using this assay, we extended our results and demonstrated that (i) inactivating NS5A mutations affecting the amino-terminal amphipathic helix cannot be complemented in trans; (ii) replication of the helper RNA is not necessary to allow efficient trans-complementation; and (iii) the minimal sequence required for trans-complementation of lethal NS5A mutations is NS3 to -5A, whereas NS5A expressed alone does not restore RNA replication. In summary, our results provide the first insight into the functional organization of the HCV replication complex.


2006 ◽  
Vol 80 (22) ◽  
pp. 11305-11312 ◽  
Author(s):  
Manuela Quintavalle ◽  
Sonia Sambucini ◽  
Chiara Di Pietro ◽  
Raffaele De Francesco ◽  
Petra Neddermann

ABSTRACT Hepatitis C virus (HCV) has been the subject of intensive studies for nearly two decades. Nevertheless, some aspects of the virus life cycle are still a mystery. The HCV nonstructural protein 5A (NS5A) has been shown to be a modulator of cellular processes possibly required for the establishment of viral persistence. NS5A is heavily phosphorylated, and a switch between a basally phosphorylated form of NS5A (p56) and a hyperphosphorylated form of NS5A (p58) seems to play a pivotal role in regulating HCV replication. Using kinase inhibitors that specifically inhibit the formation of NS5A-p58 in cells, we identified the CKI kinase family as a target. NS5A-p58 increased upon overexpression of CKI-α, CKI-δ, and CKI-ε, whereas the RNA interference of only CKI-α reduced NS5A hyperphosphorylation. Rescue of inhibition of NS5A-p58 was achieved by CKI-α overexpression, and we demonstrated that the CKI-α isoform is targeted by NS5A hyperphosphorylation inhibitors in living cells. Finally, we showed that down-regulation of CKI-α attenuates HCV RNA replication.


2008 ◽  
Vol 82 (21) ◽  
pp. 10671-10683 ◽  
Author(s):  
Anne M. Paredes ◽  
Keril J. Blight

ABSTRACT Hepatitis C virus (HCV) nonstructural protein 4B (NS4B), a poorly characterized integral membrane protein, is thought to function as a scaffold for replication complex assembly; however, functional interactions with the other HCV nonstructural proteins within this complex have not been defined. We report that a Con1 chimeric subgenomic replicon containing the NS4B gene from the closely related H77 isolate is defective for RNA replication in a transient assay, suggesting that H77 NS4B is unable to productively interact with the Con1 replication machinery. The H77 NS4B sequences that proved detrimental for Con1 RNA replication resided in the predicted N- and C-terminal cytoplasmic domains as well as the central transmembrane region. Selection for Con1 derivatives that could utilize the entire H77 NS4B or hybrid Con1-H77 NS4B proteins yielded mutants containing single amino acid substitutions in NS3 and NS4A. The second-site mutations in NS3 partially restored the replication of Con1 chimeras containing the N-terminal or transmembrane domains of H77 NS4B. In contrast, the deleterious H77-specific sequences in the C terminus of NS4B, which mapped to a cluster of four amino acids, were completely suppressed by second-site substitutions in NS3. Collectively, these results provide the first evidence for a genetic interaction between NS4B and NS3 important for productive HCV RNA replication.


2014 ◽  
Vol 58 (9) ◽  
pp. 5386-5394 ◽  
Author(s):  
Constance N. Wose Kinge ◽  
Christine Espiritu ◽  
Nishi Prabdial-Sing ◽  
Nomathamsaqa Patricia Sithebe ◽  
Mohsan Saeed ◽  
...  

ABSTRACTHepatitis C virus (HCV) exists as six major genotypes that differ in geographical distribution, pathogenesis, and response to antiviral therapy.In vitroreplication systems for all HCV genotypes except genotype 5 have been reported. In this study, we recovered genotype 5a full-length genomes from four infected voluntary blood donors in South Africa and established a G418-selectable subgenomic replicon system using one of these strains. The replicon derived from the wild-type sequence failed to replicate in Huh-7.5 cells. However, the inclusion of the S2205I amino acid substitution, a cell culture-adaptive change originally described for a genotype 1b replicon, resulted in a small number of G418-resistant cell colonies. HCV RNA replication in these cells was confirmed by quantification of viral RNA and detection of the nonstructural protein NS5A. Sequence analysis of the viral RNAs isolated from multiple independent cell clones revealed the presence of several nonsynonymous mutations, which were localized mainly in the NS3 protein. These mutations, when introduced back into the parental backbone, significantly increased colony formation. To facilitate convenient monitoring of HCV RNA replication levels, the mutant with the highest replication level was further modified to express a fusion protein of firefly luciferase and neomycin phosphotransferase. Using such replicons from genotypes 1a, 1b, 2a, 3a, 4a, and 5a, we compared the effects of various HCV inhibitors on their replication. In conclusion, we have established anin vitroreplication system for HCV genotype 5a, which will be useful for the development of pan-genotype anti-HCV compounds.


2007 ◽  
Vol 51 (12) ◽  
pp. 4290-4296 ◽  
Author(s):  
Chih-Ming Chen ◽  
Yupeng He ◽  
Liangjun Lu ◽  
Hock Ben Lim ◽  
Rakesh L. Tripathi ◽  
...  

ABSTRACT A-837093 is a potent and specific nonnucleoside inhibitor of the hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase. It possesses nanomolar potencies in both enzymatic and replicon-based cell culture assays. In rats and dogs this compound demonstrated an oral plasma half-life of greater than 7 h, and its bioavailability was >60%. In monkeys it had a half-life of 1.9 h and 15% bioavailability. Its antiviral efficacy was evaluated in two chimpanzees infected with HCV in a proof-of-concept study. The design included oral dosing of 30 mg per kg of body weight twice a day for 14 days, followed by a 14-day posttreatment observation. Maximum viral load reductions of 1.4 and 2.5 log10 copies RNA/ml for genotype 1a- and 1b-infected chimpanzees, respectively, were observed within 2 days after the initiation of treatment. After this initial drop in the viral load, a rebound of plasma HCV RNA was observed in the genotype 1b-infected chimpanzee, while the genotype 1a-infected chimpanzee experienced a partial rebound that lasted throughout the treatment period. Clonal analysis of NS5B gene sequences derived from the plasma of A-837093-treated chimpanzees revealed the presence of several mutations associated with resistance to A-837093, including Y448H, G554D, and D559G in the genotype 1a-infected chimpanzee and C316Y and G554D in the genotype 1b-infected chimpanzee. The identification of resistance-associated mutations in both chimpanzees is consistent with the findings of in vitro selection studies, in which many of the same mutations were selected. These findings validate the antiviral efficacy and resistance development of benzothiadiazine HCV polymerase inhibitors in vivo.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Gulam H. Syed ◽  
Mohsin Khan ◽  
Song Yang ◽  
Aleem Siddiqui

ABSTRACT Hepatitis C virus (HCV) exists as a lipoprotein-virus hybrid lipoviroparticle (LVP). In vitro studies have demonstrated the importance of apolipoproteins in HCV secretion and infectivity, leading to the notion that HCV coopts the secretion of very-low-density lipoprotein (VLDL) for its egress. However, the mechanisms involved in virus particle assembly and egress are still elusive. The biogenesis of VLDL particles occurs in the endoplasmic reticulum (ER), followed by subsequent lipidation in the ER and Golgi compartment. The secretion of mature VLDL particles occurs through the Golgi secretory pathway. HCV virions are believed to latch onto or fuse with the nascent VLDL particle in either the ER or the Golgi compartment, resulting in the generation of LVPs. In our attempt to unravel the collaboration between HCV and VLDL secretion, we studied HCV particles budding from the ER en route to the Golgi compartment in COPII vesicles. Biophysical characterization of COPII vesicles fractionated on an iodixanol gradient revealed that HCV RNA is enriched in the highly buoyant COPII vesicle fractions and cofractionates with apolipoprotein B (ApoB), ApoE, and the HCV core and envelope proteins. Electron microscopy of immunogold-labeled microsections revealed that the HCV envelope and core proteins colocalize with apolipoproteins and HCV RNA in Sec31-coated COPII vesicles. Ultrastructural analysis also revealed the presence of HCV structural proteins, RNA, and apolipoproteins in the Golgi stacks. These findings support the hypothesis that HCV LVPs assemble in the ER and are transported to the Golgi compartment in COPII vesicles to embark on the Golgi secretory route. IMPORTANCE HCV assembly and release accompany the formation of LVPs that circulate in the sera of HCV patients and are also produced in an in vitro culture system. The pathway of HCV morphogenesis and secretion has not been fully understood. This study investigates the exact site where the association of HCV virions with host lipoproteins occurs. Using immunoprecipitation of COPII vesicles and immunogold electron microscopy (EM), we characterize the existence of LVPs that cofractionate with lipoproteins, viral proteins, RNA, and vesicular components. Our results show that this assembly occurs in the ER, and LVPs thus formed are carried through the Golgi network by vesicular transport. This work provides a unique insight into the HCV LVP assembly process within infected cells and offers opportunities for designing antiviral therapeutic cellular targets.


2006 ◽  
Vol 50 (9) ◽  
pp. 2976-2982 ◽  
Author(s):  
Sue Ma ◽  
Joanna E. Boerner ◽  
ChoiLai TiongYip ◽  
Beat Weidmann ◽  
Neil S. Ryder ◽  
...  

ABSTRACT Host factors involved in viral replication are potentially attractive antiviral targets that are complementary to specific inhibitors of viral enzymes, since resistant mutations against the latter are likely to emerge during long-term treatment. It has been reported recently that cyclosporine, which binds to a family of cellular proteins, cyclophilins, inhibits hepatitis C virus (HCV) replication in vitro. Here, the activities of various cyclosporine derivatives were evaluated in the HCV replicon system. There was a strong correlation between the anti-HCV activity and cyclophilin-binding affinity of these compounds. Of these, NIM811 has been selected as a therapeutic candidate for HCV infection, since it binds to cyclophilins with higher affinity than cyclosporine but is devoid of the significant immunosuppressive activity associated with cyclosporine. NIM811 induced a concentration-dependent reduction of HCV RNA in the replicon cells with a 50% inhibitory concentration of 0.66 μM at 48 h. Furthermore, a greater than three-log10 viral RNA reduction was achieved after treating the cells with as little as 1 μM of NIM811 for 9 days. In addition, the combination of NIM811 with alpha interferon significantly enhanced anti-HCV activities without causing any increase of cytotoxicity. Taken together, these promising in vitro data warrant clinical investigation of NIM811, an inhibitor of novel mechanism, for the treatment of hepatitis C.


Sign in / Sign up

Export Citation Format

Share Document