scholarly journals Hepatitis C Virus Genotype 5a Subgenomic Replicons for Evaluation of Direct-Acting Antiviral Agents

2014 ◽  
Vol 58 (9) ◽  
pp. 5386-5394 ◽  
Author(s):  
Constance N. Wose Kinge ◽  
Christine Espiritu ◽  
Nishi Prabdial-Sing ◽  
Nomathamsaqa Patricia Sithebe ◽  
Mohsan Saeed ◽  
...  

ABSTRACTHepatitis C virus (HCV) exists as six major genotypes that differ in geographical distribution, pathogenesis, and response to antiviral therapy.In vitroreplication systems for all HCV genotypes except genotype 5 have been reported. In this study, we recovered genotype 5a full-length genomes from four infected voluntary blood donors in South Africa and established a G418-selectable subgenomic replicon system using one of these strains. The replicon derived from the wild-type sequence failed to replicate in Huh-7.5 cells. However, the inclusion of the S2205I amino acid substitution, a cell culture-adaptive change originally described for a genotype 1b replicon, resulted in a small number of G418-resistant cell colonies. HCV RNA replication in these cells was confirmed by quantification of viral RNA and detection of the nonstructural protein NS5A. Sequence analysis of the viral RNAs isolated from multiple independent cell clones revealed the presence of several nonsynonymous mutations, which were localized mainly in the NS3 protein. These mutations, when introduced back into the parental backbone, significantly increased colony formation. To facilitate convenient monitoring of HCV RNA replication levels, the mutant with the highest replication level was further modified to express a fusion protein of firefly luciferase and neomycin phosphotransferase. Using such replicons from genotypes 1a, 1b, 2a, 3a, 4a, and 5a, we compared the effects of various HCV inhibitors on their replication. In conclusion, we have established anin vitroreplication system for HCV genotype 5a, which will be useful for the development of pan-genotype anti-HCV compounds.

2008 ◽  
Vol 82 (21) ◽  
pp. 10671-10683 ◽  
Author(s):  
Anne M. Paredes ◽  
Keril J. Blight

ABSTRACT Hepatitis C virus (HCV) nonstructural protein 4B (NS4B), a poorly characterized integral membrane protein, is thought to function as a scaffold for replication complex assembly; however, functional interactions with the other HCV nonstructural proteins within this complex have not been defined. We report that a Con1 chimeric subgenomic replicon containing the NS4B gene from the closely related H77 isolate is defective for RNA replication in a transient assay, suggesting that H77 NS4B is unable to productively interact with the Con1 replication machinery. The H77 NS4B sequences that proved detrimental for Con1 RNA replication resided in the predicted N- and C-terminal cytoplasmic domains as well as the central transmembrane region. Selection for Con1 derivatives that could utilize the entire H77 NS4B or hybrid Con1-H77 NS4B proteins yielded mutants containing single amino acid substitutions in NS3 and NS4A. The second-site mutations in NS3 partially restored the replication of Con1 chimeras containing the N-terminal or transmembrane domains of H77 NS4B. In contrast, the deleterious H77-specific sequences in the C terminus of NS4B, which mapped to a cluster of four amino acids, were completely suppressed by second-site substitutions in NS3. Collectively, these results provide the first evidence for a genetic interaction between NS4B and NS3 important for productive HCV RNA replication.


2020 ◽  
Vol 295 (35) ◽  
pp. 12426-12436 ◽  
Author(s):  
Lorillee Tallorin ◽  
Valerie A. Villareal ◽  
Chih-Yun Hsia ◽  
Mary A. Rodgers ◽  
Dominique J. Burri ◽  
...  

Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo. We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.


2006 ◽  
Vol 80 (12) ◽  
pp. 6013-6023 ◽  
Author(s):  
Guann-Yi Yu ◽  
Ki-Jeong Lee ◽  
Lu Gao ◽  
Michael M. C. Lai

ABSTRACT Hepatitis C Virus (HCV) NS4B protein induces a specialized membrane structure which may serve as the replication platform for HCV RNA replication. In the present study, we demonstrated that NS4B has lipid modifications (palmitoylation) on two cysteine residues (cysteines 257 and 261) at the C-terminal end. Site-specific mutagenesis of these cysteine residues on individual NS4B proteins and on an HCV subgenomic replicon showed that the lipid modifications, particularly of Cys261, are important for protein-protein interaction in the formation of the HCV RNA replication complex. We further demonstrated that NS4B can undergo polymerization. The main polymerization determinants were mapped in the N-terminal cytosolic domain of NS4B protein; however, the lipid modifications on the C terminus also facilitate the polymerization process. The lipid modification and the polymerization activity could be two properties of NS4B important for its induction of the specialized membrane structure involved in viral RNA replication.


2005 ◽  
Vol 79 (2) ◽  
pp. 896-909 ◽  
Author(s):  
Nicole Appel ◽  
Ulrike Herian ◽  
Ralf Bartenschlager

ABSTRACT Studies of Hepatitis C virus (HCV) RNA replication have become possible with the development of subgenomic replicons. This system allows the functional analysis of the essential components of the viral replication complex, which so far are poorly defined. In the present study we wanted to investigate whether lethal mutations in HCV nonstructural genes can be rescued by trans-complementation. Therefore, a series of replicon RNAs carrying mutations in NS3, NS4B, NS5A, and NS5B that abolish replication were transfected into Huh-7 hepatoma cells harboring autonomously replicating helper RNAs. Similar to data described for the Bovine viral diarrhea virus (C. W. Grassmann, O. Isken, N. Tautz, and S. E. Behrens, J. Virol. 75:7791-7802, 2001), we found that only NS5A mutants could be efficiently rescued. There was no evidence for RNA recombination between helper and mutant RNAs, and we did not observe reversions in the transfected mutants. Furthermore, we established a transient complementation assay based on the cotransfection of helper and mutant RNAs. Using this assay, we extended our results and demonstrated that (i) inactivating NS5A mutations affecting the amino-terminal amphipathic helix cannot be complemented in trans; (ii) replication of the helper RNA is not necessary to allow efficient trans-complementation; and (iii) the minimal sequence required for trans-complementation of lethal NS5A mutations is NS3 to -5A, whereas NS5A expressed alone does not restore RNA replication. In summary, our results provide the first insight into the functional organization of the HCV replication complex.


Virology ◽  
2002 ◽  
Vol 297 (2) ◽  
pp. 298-306 ◽  
Author(s):  
I.Wayne Cheney ◽  
Suhaila Naim ◽  
Vicky C.H. Lai ◽  
Shannon Dempsey ◽  
Daniel Bellows ◽  
...  

2014 ◽  
Vol 59 (2) ◽  
pp. 988-997 ◽  
Author(s):  
Tami Pilot-Matias ◽  
Rakesh Tripathi ◽  
Daniel Cohen ◽  
Isabelle Gaultier ◽  
Tatyana Dekhtyar ◽  
...  

ABSTRACTThe development of direct-acting antiviral agents is a promising therapeutic advance in the treatment of hepatitis C virus (HCV) infection. However, rapid emergence of drug resistance can limit efficacy and lead to cross-resistance among members of the same drug class. ABT-450 is an efficacious inhibitor of HCV NS3/4A protease, with 50% effective concentration values of 1.0, 0.21, 5.3, 19, 0.09, and 0.69 nM against stable HCV replicons with NS3 protease from genotypes 1a, 1b, 2a, 3a, 4a, and 6a, respectively.In vitro, the most common amino acid variants selected by ABT-450 in genotype 1 were located in NS3 at positions 155, 156, and 168, with the D168Y variant conferring the highest level of resistance to ABT-450 in both genotype 1a and 1b replicons (219- and 337-fold, respectively). In a 3-day monotherapy study with HCV genotype 1-infected patients, ABT-450 was coadministered with ritonavir, a cytochrome P450 3A4 inhibitor shown previously to markedly increase peak, trough, and overall drug exposures of ABT-450. A mean maximum HCV RNA decline of 4.02 log10was observed at the end of the 3-day dosing period across all doses. The most common variants selected in these patients were R155K and D168V in genotype 1a and D168V in genotype 1b. However, selection of resistant variants was significantly reduced at the highest ABT-450 dose compared to lower doses. These findings were informative for the subsequent evaluation of ABT-450 in combination with additional drug classes in clinical trials in HCV-infected patients. (Study M11-602 is registered at ClinicalTrials.gov under registration no. NCT01074008.)


2006 ◽  
Vol 80 (7) ◽  
pp. 3332-3340 ◽  
Author(s):  
Tetsuro Shimakami ◽  
Masao Honda ◽  
Takashi Kusakawa ◽  
Takayuki Murata ◽  
Kunitada Shimotohno ◽  
...  

ABSTRACT We previously reported that nucleolin, a representative nucleolar marker, interacts with nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) through two independent regions of NS5B, amino acids 208 to 214 and 500 to 506. We also showed that truncated nucleolin that harbors the NS5B-binding region inhibited the RNA-dependent RNA polymerase activity of NS5B in vitro, suggesting that nucleolin may be involved in HCV replication. To address this question, we focused on NS5B amino acids 208 to 214. We constructed one alanine-substituted clustered mutant (CM) replicon, in which all the amino acids in this region were changed to alanine, as well as seven different point mutant (PM) replicons, each of which harbored an alanine substitution at one of the amino acids in the region. After transfection into Huh7 cells, the CM replicon and the PM replicon containing NS5B W208A could not replicate, whereas the remaining PM replicons were able to replicate. In vivo immunoprecipitation also showed that the W208 residue of NS5B was essential for its interaction with nucleolin, strongly suggesting that this interaction is essential for HCV replication. To gain further insight into the role of nucleolin in HCV replication, we utilized the small interfering RNA (siRNA) technique to investigate the knockdown effect of nucleolin on HCV replication. Cotransfection of replicon RNA and nucleolin siRNA into Huh7 cells moderately inhibited HCV replication, although suppression of nucleolin did not affect cell proliferation. Taken together, our findings strongly suggest that nucleolin is a host component that interacts with HCV NS5B and is indispensable for HCV replication.


2004 ◽  
Vol 85 (9) ◽  
pp. 2485-2502 ◽  
Author(s):  
Andrew Macdonald ◽  
Mark Harris

The non-structural 5A (NS5A) protein of hepatitis C virus (HCV) has been the subject of intensive research over the last decade. It is generally accepted that NS5A is a pleiotropic protein with key roles in both viral RNA replication and modulation of the physiology of the host cell. Our understanding of the role of NS5A in the virus life cycle has been hampered by the lack of a robust in vitro system for the study of HCV replication, although the recent development of the subgenomic replicon has at least allowed us to begin to dissect the involvement of NS5A in the process of viral RNA replication. Early studies into the effects of NS5A on cell physiology relied on expression of NS5A either alone or in the context of other non-structural proteins; the advent of the replicon system has allowed the extrapolation of these studies to a more physiologically relevant cellular context. Despite recent progress, this field is controversial, and there is much work to be accomplished before we fully understand the many functions of this protein. In this article, the current state of our knowledge of NS5A, discussing in detail its direct involvement in virus replication, together with its role in modulating the cellular environment to favour virus replication and persistence, are reviewed. The effects of NS5A on interferon signalling, and the regulation of cell growth and apoptosis are highlighted, demonstrating that this protein is indeed of critical importance for HCV and is worthy of further investigation.


2004 ◽  
Vol 48 (12) ◽  
pp. 4784-4792 ◽  
Author(s):  
Kai Lin ◽  
Ann D. Kwong ◽  
Chao Lin

ABSTRACT The present standard of care for hepatitis C virus (HCV) infection is pegylated alpha interferon (IFN-α) in combination with ribavirin. However, specific antivirals such as HCV NS3-NS4A protease inhibitors are now in clinical development, and these agents can potentially be used in combination with the present treatments. Therefore, it is important to investigate the potential benefits or adverse effects of these new combinations by using available in vitro HCV culture systems first. In the present study we demonstrate that the combination of a specific HCV NS3-NS4A protease inhibitor and IFN-α synergistically inhibits HCV RNA replication in replicon cells, with little or no increase in cytotoxicity. Furthermore, the benefit of the combination was sustained over time, such that a greater than 3-log reduction in HCV RNA levels was achieved following 9 days of treatment. The viral RNA appeared to be cleared from the replicon cells after 14 days of treatment, and no viral RNA rebound was observed upon withdrawal of the inhibitors. In each case, the antiviral effects obtained with higher concentrations of either the protease inhibitor alone or IFN-α alone can be achieved by a combination of both agents at lower concentrations, which may potentially reduce the risk of possible adverse effects associated with high doses of either agent.


2005 ◽  
Vol 79 (1) ◽  
pp. 592-596 ◽  
Author(s):  
Takanobu Kato ◽  
Tomoko Date ◽  
Michiko Miyamoto ◽  
Zijiang Zhao ◽  
Masashi Mizokami ◽  
...  

ABSTRACT The hepatitis C virus (HCV) genotype 2a subgenomic replicon can replicate in two human non-hepatocyte-derived cell lines, HeLa and 293, with in vitro-transcribed replicon RNA. Sequencing analysis revealed that mutations in HCV-derived regions were not essential for replication in these cells, as some clones displayed no mutations.


Sign in / Sign up

Export Citation Format

Share Document