scholarly journals Atypical Molecular Basis for Drug Resistance to Mitochondrial Function Inhibitors in Plasmodium falciparum

2020 ◽  
Vol 65 (3) ◽  
Author(s):  
Heather J. Painter ◽  
Joanne M. Morrisey ◽  
Michael W. Mather ◽  
Lindsey M. Orchard ◽  
Cuyler Luck ◽  
...  

ABSTRACT The continued emergence of drug-resistant Plasmodium falciparum parasites hinders global attempts to eradicate malaria, emphasizing the need to identify new antimalarial drugs. Attractive targets for chemotherapeutic intervention are the cytochrome (cyt) bc1 complex, which is an essential component of the mitochondrial electron transport chain (mtETC) required for ubiquinone recycling and mitochondrially localized dihydroorotate dehydrogenase (DHODH) critical for de novo pyrimidine synthesis. Despite the essentiality of this complex, resistance to a novel acridone class of compounds targeting cyt bc1 was readily attained, resulting in a parasite strain (SB1-A6) that was panresistant to both mtETC and DHODH inhibitors. Here, we describe the molecular mechanism behind the resistance of the SB1-A6 parasite line, which lacks the common cyt bc1 point mutations characteristic of resistance to mtETC inhibitors. Using Illumina whole-genome sequencing, we have identified both a copy number variation (∼2×) and a single-nucleotide polymorphism (C276F) associated with pfdhodh in SB1-A6. We have characterized the role of both genetic lesions by mimicking the copy number variation via episomal expression of pfdhodh and introducing the identified single nucleotide polymorphism (SNP) using CRISPR-Cas9 and assessed their contributions to drug resistance. Although both of these genetic polymorphisms have been previously identified as contributing to both DSM-1 and atovaquone resistance, SB1-A6 represents a unique genotype in which both alterations are present in a single line, suggesting that the combination contributes to the panresistant phenotype. This novel mechanism of resistance to mtETC inhibition has critical implications for the development of future drugs targeting the bc1 complex or de novo pyrimidine synthesis that could help guide future antimalarial combination therapies and reduce the rapid development of drug resistance in the field.

2020 ◽  
Author(s):  
Heather J. Painter ◽  
Joanne M. Morrisey ◽  
Michael W. Mather ◽  
Lindsey M. Orchard ◽  
Cuyler Luck ◽  
...  

AbstractThe continued emergence of drug-resistant Plasmodium falciparum parasites hinders global attempts to eradicate malaria, emphasizing the need to identify new antimalarial drugs. Attractive targets for chemotherapeutic intervention are the cytochrome (cyt) bc1 complex, which is an essential component of the mitochondrial electron transport chain (mtETC) necessary for ubiquinone recycling and mitochondrially localized dihydroorotate dehydrogenase (DHODH) critical for de novo pyrimidine synthesis. Despite the essentiality of this complex, resistance to a novel acridone class of compounds targeting cyt bc1 was readily attained, resulting in a parasite strain (SB1-A6) that was pan-resistant to both mtETC and DHODH inhibitors. Here we describe the molecular mechanism behind the resistance of the SB1-A6 parasite line which lacks the common cyt bc1 point mutations characteristic of resistance to mtETC inhibitors. Using Illumina whole-genome sequencing, we have identified both a copy number variation (∼2x) and a single-nucleotide polymorphism (C276F) associated with pfdhodh in SB1-A6. We have characterized the role of both genetic lesions by mimicking the copy number variation via episomal expression of pfdhodh and introducing the identified SNP using CRISPR/Cas9 and assessed their contributions to drug resistance. Although both of these genetic polymorphisms have been previously identified as contributing to both DSM-1 (1) and atovaquone resistance (2, 3), SB1-A6 represents a unique genotype in which both alterations are present in a single line, suggesting that the combination contributes to the pan-resistant phenotype. This novel mechanism of resistance to mtETC inhibition has critical implications for the development of future drugs targeting the bc1 complex or de novo pyrimidine synthesis that could help guide future anti-malarial combination therapies and reduce the rapid development of drug resistance in the field.


2014 ◽  
Vol 27 (12) ◽  
pp. 1691-1694 ◽  
Author(s):  
HyoYoung Kim ◽  
Samsun Sung ◽  
Seoae Cho ◽  
Tae-Hun Kim ◽  
Kangseok Seo ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Nedenia Bonvino Stafuzza ◽  
Rafael Medeiros de Oliveira Silva ◽  
Breno de Oliveira Fragomeni ◽  
Yutaka Masuda ◽  
Yijian Huang ◽  
...  

2012 ◽  
Vol 87 (5) ◽  
pp. 813-821 ◽  
Author(s):  
Rosa del Carmen Miluska Vargas-Rodríguez ◽  
Maria José Menezes ◽  
Pamela Orjuela-Sánchez ◽  
Marcelo U. Ferreira ◽  
Melissa da Silva Bastos

2020 ◽  
Author(s):  
Chuo Jiang ◽  
Cong Ma ◽  
Detao Wang ◽  
Li Liu ◽  
Chunxiu Zhang ◽  
...  

AbstractTOP2-poisoning bioflavonoids and pesticides are linked to the copy number variation-related autism and chromosome translocation-related leukemia. On the other hand, the poisoned DNA topoisomerase II (TOP2) can lead to chromosome aberration. However, except a limited number of genes such as the MLL fusion, other poisoned TOP2-targeted genes, as well as their relationships with any specific diseases, are not defined. We applied the γH2A.X antibodies to genome-widely immunoprecipitate the chromatins that were associated with the repair of the TOP2 poison etoposide-induced DNA double strand breaks. We identified many transcriptable protein- and nonprotein-coding DNA sequences that are the candidates of or associated with many gene copy number variation- and/or single nucleotide polymorphism-associated diseases, including but not limited to microdeletion and microduplication syndromes (which are phenotypically presented as developmental, autistic, neurological, psychiatric, diabetic, autoimmune, and neoplastic diseases among many others) as well as stature, obesity, metabolic syndrome, hypertension, coronary artery disease, ischemic stroke, aortic aneurysm and dissection, leukemia, cancer, osteoporosis, Alzheimer disease, Parkinson disease, and Huntington disease. Our data raise the possibility that the poisoned TOP2 might be linked to the specific genetic alterations contributing to these diseases, additional to the known copy number variation-related autism and chromosome translocation-related leukemia. According to our and others’ data, we propose a model that may interpret the features, such as mosaicism, polygenic traits and pleiotropy, of these diseases.Author SummaryFor the past several decades, the morbidity rate of many diseases, including autism, mental disorders, cancer, cardiovascular diseases, diabetes, and senile dementia, has world-widely been rising. Analysis of the genome of the patients and their family members has identified the genes, whose alterations, so called copy number variation (CNV) and single nucleotide polymorphism (SNP), contribute to the diseases. Moreover, the CNVs and SNPs are de novo, that is, they have occurred only in the recent generations. Epidemiologically, this indicates that for the past several decades, there have existed some unknown world-wide etiologies to which human beings are exposed. If the etiologies are identified, avoiding human’s exposure may reduce the morbidity of the diseases. We have found that the repair of the poisoned topoisomerase II involves many genes that contribute to the aforementioned diseases. As the topoisomerase II is known to be located at the genomic sites where the disease-associated CNVs occur, as the poisoned topoisomerase II is susceptible to chromosome aberration, and as the topoisomerase II poisons, such as dietary bioflavonoids, are widely distributed in the environment, our data raise the yet-to-be-confirmed possibility that the environmental topoisomerase II poisons might etiologically contribute to many CNV-associated diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Meiying Cai ◽  
Xianguo Fu ◽  
Liangpu Xu ◽  
Na Lin ◽  
Hailong Huang

Smith-Magenis syndrome and Potocki-Lupski syndrome are rare autosomal dominant diseases. Although clinical phenotypes of adults and children have been reported, fetal ultrasonic phenotypes are rarely reported. A retrospective analysis of 6,200 pregnant women who received invasive prenatal diagnosis at Fujian Provincial Maternal and Child Health Hospital between October 2016 and January 2021 was performed. Amniotic fluid or umbilical cord blood was extracted for karyotyping and single nucleotide polymorphism array analysis. Single nucleotide polymorphism array analysis revealed six fetuses with copy number variant changes in the 17p11.2 region. Among them, one had a copy number variant microdeletion in the 17p11.2 region, which was pathogenically analyzed and diagnosed as Smith-Magenis syndrome. Five fetuses had copy number variant microduplications in the 17p11.2 region, which were pathogenically analyzed and diagnosed as Potocki-Lupski syndrome. The prenatal ultrasound phenotypes of the six fetuses were varied. The parents of two fetuses with Potocki-Lupski syndrome refused verification. Smith-Magenis syndrome in one fetus and Potocki-Lupski in another were confirmed as de novo. Potocki-Lupski syndrome in two fetuses was confirmed to be from maternal inheritance. The prenatal ultrasound phenotypes of Smith-Magenis syndrome and Potocki-Lupski syndrome in fetuses vary; single nucleotide polymorphism array analysis is a powerful diagnostic tool for these diseases. The ultrasonic phenotypes of these cases may enrich the clinical database.


Sign in / Sign up

Export Citation Format

Share Document