pyrimidine synthesis
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 67)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Diana D. Shi ◽  
Milan R. Savani ◽  
Michael M. Levitt ◽  
Adam C. Wang ◽  
Jennifer E. Endress ◽  
...  

Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they appear less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1 mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH mutant gliomas. Mechanistically, this vulnerability selectively applies to de novo pyrimidine, but not purine, synthesis because glioma cells engage disparate programs to produce these nucleotide species and because IDH oncogenes increase DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marlies J. W. Peeters ◽  
Pia Aehnlich ◽  
Adriano Pizzella ◽  
Kasper Mølgaard ◽  
Tina Seremet ◽  
...  

T-cell activation upon antigen stimulation is essential for the continuation of the adaptive immune response. Impairment of mitochondrial oxidative phosphorylation is a well-known disruptor of T-cell activation. Dihydroorotate dehydrogenase (DHODH) is a component of the de novo synthesis of pyrimidines, the activity of which depends on functional oxidative phosphorylation. Under circumstances of an inhibited oxidative phosphorylation, DHODH becomes rate-limiting. Inhibition of DHODH is known to block clonal expansion and expression of effector molecules of activated T cells. However, this effect has been suggested to be caused by downstream impairment of oxidative phosphorylation rather than a lower rate of pyrimidine synthesis. In this study, we successfully inhibit the DHODH of T cells with no residual effect on oxidative phosphorylation and demonstrate a dose-dependent inhibition of proliferation of activated CD3+ T cells. This block is fully rescued when uridine is supplemented. Inhibition of DHODH does not alter expression of effector molecules but results in decreased intracellular levels of deoxypyrimidines without decreasing cell viability. Our results clearly demonstrate the DHODH and mitochondrial linked pyrimidine synthesis as an independent and important cytostatic regulator of activated T cells.


2021 ◽  
Author(s):  
Michael Claiborne ◽  
Srona Sengupta ◽  
Liang Zhao ◽  
Matthew L Arwood ◽  
Im-Meng Sun ◽  
...  

Memory CD8+ T cells are characterized by their ability to persist long after the initial antigen encounter and their ability to generate a rapid recall response. Recent studies have identified a role for metabolic reprogramming and mitochondrial function in promoting the longevity of memory T cells. However, detailed mechanisms involved in promoting the rapid recall response are incompletely understood. Here we identify a novel role for the initial and continued activation of the trifunctional rate-limiting enzyme of the de novo pyrimidine synthesis pathway CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase) as critical in promoting the rapid recall response of previously-activated CD8+ T cells. CAD is rapidly phosphorylated upon T cell activation in an mTORC1-dependent manner yet remains phosphorylated long after initial activation. Previously-activated CD8+ T cells display continued de novo pyrimidine synthesis in the absence of mitogenic signals and interfering with this pathway diminishes the speed and magnitude of cytokine production upon rechallenge. Inhibition of CAD does not affect cytokine transcript levels, but diminishes available pre-rRNA, the polycistronic rRNA precursor whose synthesis is the rate-limiting step in ribosomal biogenesis. CAD inhibition additionally decreases levels of detectable ribosomal proteins in previously-activated CD8+ T cells. Overexpression of CAD improves both the cytokine response and proliferation of memory T cells. Overall, our studies reveal a novel and critical role for CAD-induced pyrimidine synthesis and ribosomal biogenesis in promoting the rapid recall response characteristic of memory T cells.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jonna Bouwknegt ◽  
Charlotte C. Koster ◽  
Aurin M. Vos ◽  
Raúl A. Ortiz-Merino ◽  
Mats Wassink ◽  
...  

Abstract Background In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerevisiae and closely related yeast species harbor a cytosolic Class-I DHOD (Ura1) that uses fumarate as electron acceptor and thereby enables anaerobic pyrimidine synthesis. Here, we investigate DHODs from three fungi (the Neocallimastigomycete Anaeromyces robustus and the yeasts Schizosaccharomyces japonicus and Dekkera bruxellensis) that can grow anaerobically but, based on genome analysis, only harbor a Class-II DHOD. Results Heterologous expression of putative Class-II DHOD-encoding genes from fungi capable of anaerobic, pyrimidine-prototrophic growth (Arura9, SjURA9, DbURA9) in an S. cerevisiae ura1Δ strain supported aerobic as well as anaerobic pyrimidine prototrophy. A strain expressing DbURA9 showed delayed anaerobic growth without pyrimidine supplementation. Adapted faster growing DbURA9-expressing strains showed mutations in FUM1, which encodes fumarase. GFP-tagged SjUra9 and DbUra9 were localized to S. cerevisiae mitochondria, while ArUra9, whose sequence lacked a mitochondrial targeting sequence, was localized to the yeast cytosol. Experiments with cell extracts showed that ArUra9 used free FAD and FMN as electron acceptors. Expression of SjURA9 in S. cerevisiae reproducibly led to loss of respiratory competence and mitochondrial DNA. A cysteine residue (C265 in SjUra9) in the active sites of all three anaerobically active Ura9 orthologs was shown to be essential for anaerobic activity of SjUra9 but not of ArUra9. Conclusions Activity of fungal Class-II DHODs was long thought to be dependent on an active respiratory chain, which in most fungi requires the presence of oxygen. By heterologous expression experiments in S. cerevisiae, this study shows that phylogenetically distant fungi independently evolved Class-II dihydroorotate dehydrogenases that enable anaerobic pyrimidine biosynthesis. Further structure–function studies are required to understand the mechanistic basis for the anaerobic activity of Class-II DHODs and an observed loss of respiratory competence in S. cerevisiae strains expressing an anaerobically active DHOD from Sch. japonicus.


2021 ◽  
Vol 9 (10) ◽  
pp. 2148
Author(s):  
Chunguang Liang ◽  
Ana Rios-Miguel ◽  
Marcel Jarick ◽  
Priya Neurgaonkar ◽  
Myriam Girard ◽  
...  

Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB+) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB-) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ellahe Sabbaghnasab ◽  
Enayatollah Sheikhhosseini

: NiO nanoparticles are utilized to effectively strengthen annulated pyrano [2, 3- d] pyrimidine synthesis through primary Knoevenagel, following Micheal and ultimate heterocyclization reactions of aldehyde, malononitrile, and barbituric acid. The characteristics of NiO nanoparticles are identified using advanced techniques, such as IR, UV, EDX, XRD, SEM, and TEM. The nano-NiO particles are mostly below < 100 nm in size with uniform spherical shapes. The adopted approach is advantages thanks to its simple processing, relatively short reaction time, often good to high average yields, convenient workability, and environmental friendliness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Louis M. P. Ter-Ovanessian ◽  
Baptiste Rigaud ◽  
Alberto Mezzetti ◽  
Jean-François Lambert ◽  
Marie-Christine Maurel

AbstractThe first step of pyrimidine synthesis along the orotate pathway is studied to test the hypothesis of geochemical continuity of protometabolic pathways at the origins of life. Carbamoyl phosphate (CP) is the first high-energy building block that intervenes in the in vivo synthesis of the uracil ring of UMP. Thus, the likelihood of its occurrence in prebiotic conditions is investigated herein. The evolution of carbamoyl phosphate in water and in ammonia aqueous solutions without enzymes was characterised using ATR-IR, 31P and 13C spectroscopies. Carbamoyl phosphate initially appears stable in water at ambient conditions before transforming to cyanate and carbamate/hydrogenocarbonate species within a matter of hours. Cyanate, less labile than CP, remains a potential carbamoylating agent. In the presence of ammonia, CP decomposition occurs more rapidly and generates urea. We conclude that CP is not a likely prebiotic reagent by itself. Alternatively, cyanate and urea may be more promising substitutes for CP, because they are both “energy-rich” (high free enthalpy molecules in aqueous solutions) and kinetically inert regarding hydrolysis. Energy-rich inorganic molecules such as trimetaphosphate or phosphoramidates were also explored for their suitability as sources of carbamoyl phosphate. Although these species did not generate CP or other carbamoylating agents, they exhibited energy transduction, specifically the formation of high-energy P–N bonds. Future efforts should aim to evaluate the role of carbamoylating agents in aspartate carbamoylation, which is the following reaction in the orotate pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuzo Sato ◽  
Masaru Tomita ◽  
Tomoyoshi Soga ◽  
Atsushi Ochiai ◽  
Hideki Makinoshima

Malignant pleural mesothelioma (MPM) is an invasive malignancy that develops in the pleural cavity, and antifolates are used as chemotherapeutics for treating. The majority of antifolates, including pemetrexed (PMX), inhibit enzymes involved in purine and pyrimidine synthesis. MPM patients frequently develop drug resistance in clinical practice, however the associated drug-resistance mechanism is not well understood. This study was aimed to elucidate the mechanism underlying resistance to PMX in MPM cell lines. We found that among the differentially expressed genes associated with drug resistance (determined by RNA sequencing), TYMS expression was higher in the established resistant cell lines than in the parental cell lines. Knocking down TYMS expression significantly reduced drug resistance in the resistant cell lines. Conversely, TYMS overexpression significantly increased drug resistance in the parental cells. Metabolomics analysis revealed that the levels of dTMP were higher in the resistant cell lines than in the parental cell lines; however, resistant cells showed no changes in dTTP levels after PMX treatment. We found that the nucleic acid-biosynthetic pathway is important for predicting the efficacy of PMX in MPM cells. The results of chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assays suggested that H3K27 acetylation in the 5′-UTR of TYMS may promote its expression in drug-resistant cells. Our findings indicate that the intracellular levels of dTMP are potential biomarkers for the effective treatment of patients with MPM and suggest the importance of regulatory mechanisms of TYMS expression in the disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hélène Buvelot ◽  
Myriam Roth ◽  
Vincent Jaquet ◽  
Andrey Lozkhin ◽  
Adriana Renzoni ◽  
...  

Reactive oxygen species (ROS) play a crucial role in the cellular defense against S. aureus, as evidenced by the importance of this pathogen in patients lacking the ROS-generating phagocyte NADPH oxidase NOX2. ROS concentrations required to kill S. aureus in vitro are much higher than those found in the phagosome. We therefore hypothesized that sublethal ROS concentrations may play a role in S. aureus gene dysregulation and investigated the in vitro transcriptomic response of S. aureus to sublethal concentrations of hydrogen peroxide (H2O2). A striking observation of these experiments was a coordinated and massive downregulation of genes involved in pyrimidine metabolism. Using transposon insertion mutants, we demonstrated that deletion of carA, a gene involved in pyrimidine synthesis, led to a significant growth defect and to an increased sensitivity of S. aureus to added H2O2. The phenotype of the carA mutant could be reversed through supplementation with the pyrimidine precursor uracil, or with a multicopy vector encoding carA. As opposed to the impact of ROS on extracellular survival, carA deletion did not affect the intracellular survival in neutrophils. Our results raise the possibility that ROS-dependent downregulation of pyrimidine metabolism might be a survival strategy of S. aureus, allowing colonization through intracellular survival, while decreasing the risk of killing the host through dampened extracellular growth.


2021 ◽  
Author(s):  
Louis Ter-Ovanessian ◽  
Baptiste Rigaud ◽  
Alberto Mezzetti ◽  
Jean-François Lambert ◽  
Marie-Christine Maurel

The first step of pyrimidine synthesis along the orotate pathway is studied to test the hypothesis of geochemical continuity of protometabolic pathways at the origins of life. Carbamoyl phosphate (CP) is the first high-energy building block that intervenes in the in vivo synthesis of the uracil ring of UMP. Thus, the likelihood of its occurrence in prebiotic conditions is investigated herein. The evolution of carbamoyl phosphate in water and in ammonia aqueous solutions without enzymes was characterised using ATR-IR, 31P and 13C spectroscopies. Carbamoyl phosphate initially appears stable in water at ambient conditions before transforming to cyanate and carbamate/hydrogenocarbonate species within a matter of hours. Cyanate, less labile than CP, remains a potential carbamoylating agent. In the presence of ammonia, CP decomposition occurs more rapidly and generates urea. We conclude that CP is not a likely prebiotic reagent by itself. Alternatively, cyanate and urea may be more promising substitutes for CP, because they are both “energy-rich” (high free enthalpy molecules in aqueous solutions) and kinetically inert regarding hydrolysis. Energy-rich inorganic molecules such as trimetaphosphate or phosphoramidates were also explored for their suitability as sources of carbamoyl phosphate. Although these species did not generate CP or other carbamoylating agents, they exhibited energy transduction, specifically the formation of high-energy P-N bonds. Future efforts should aim to evaluate the role of carbamoylating agents in aspartate carbamoylation, which is the following reaction in the orotate pathway


Sign in / Sign up

Export Citation Format

Share Document