scholarly journals Evaluation of a Loop-Mediated Isothermal Amplification-Based Assay for the Rapid Detection of Plasmid-Encoded Colistin Resistance Gene mcr-1 in Enterobacteriaceae Isolates

2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Can Imirzalioglu ◽  
Linda Falgenhauer ◽  
Judith Schmiedel ◽  
Said-Elias Waezsada ◽  
Konrad Gwozdzinski ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249582
Author(s):  
Lin Gong ◽  
Fei Tang ◽  
Ernan Liu ◽  
Xiaoli Liu ◽  
Huiqiong Xu ◽  
...  

A loop-mediated isothermal amplification assay combined with a nanoparticle-based lateral flow biosensor (LAMP-LFB) was established for the rapid and accurate detection of the mobilized colistin resistance gene (mcr-1), which causes the loss of colistin antibacterial efficacy in clinical treatments. The amplification stage of the assay was completed in 60 min at 63°C, and the reaction products could be visually detected by employing the LFB, which provided a fast (within 2 min) and objective method to evaluate the amplification results. The LAMP assay amplified the target sequences of mcr-1 with high specificity. In pure strains, the detection limit of the LAMP-LFB assay was 360 fg plasmid DNA/reaction, and in spiked feces samples the value was approximately 6.3×103 CFU/mL (~6.3 CFU/reaction), which was tenfold more sensitive than the PCR assay. The results show that the developed LAMP-LFB assay will be a worthy tool for the simple, rapid, specific, and sensitive detection of mcr-1 gene in clinical settings and resource-limited areas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Severino Jefferson Ribeiro da Silva ◽  
Keith Pardee ◽  
Udeni B. R. Balasuriya ◽  
Lindomar Pena

AbstractWe have previously developed and validated a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of the Zika virus (ZIKV) from mosquito samples. Patient diagnosis of ZIKV is currently carried out in centralized laboratories using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which, while the gold standard molecular method, has several drawbacks for use in remote and low-resource settings, such as high cost and the need of specialized equipment. Point-of-care (POC) diagnostic platforms have the potential to overcome these limitations, especially in low-resource countries where ZIKV is endemic. With this in mind, here we optimized and validated our RT-LAMP assay for rapid detection of ZIKV from patient samples. We found that the assay detected ZIKV from diverse sample types (serum, urine, saliva, and semen) in as little as 20 min, without RNA extraction. The RT-LAMP assay was highly specific and up to 100 times more sensitive than RT-qPCR. We then validated the assay using 100 patient serum samples collected from suspected cases of arbovirus infection in the state of Pernambuco, which was at the epicenter of the last Zika epidemic. Analysis of the results, in comparison to RT-qPCR, found that the ZIKV RT-LAMP assay provided sensitivity of 100%, specificity of 93.75%, and an overall accuracy of 95.00%. Taken together, the RT-LAMP assay provides a straightforward and inexpensive alternative for the diagnosis of ZIKV from patients and has the potential to increase diagnostic capacity in ZIKV-affected areas, particularly in low and middle-income countries.


Sign in / Sign up

Export Citation Format

Share Document