scholarly journals Biodistribution and In Vivo Antileishmanial Activity of 1,2-Distigmasterylhemisuccinoyl-sn-Glycero-3-Phosphocholine Liposome-Intercalated Amphotericin B

2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Maryam Iman ◽  
Zhaohua Huang ◽  
Seyedeh Hoda Alavizadeh ◽  
Francis C. Szoka ◽  
Mahmoud R. Jaafari

ABSTRACT 1,2-Distigmasterylhemisuccinoyl-sn-glycero-3-phosphocholine (DSHemsPC) is a new lipid in which two molecules of stigmasterol (an inexpensive plant sterol) are covalently linked via a succinic acid to glycerophosphocholine. Our previous study revealed that liposome (Lip)-intercalated amphotericin B (AMB) prepared from DSHemsPC (DSHemsPC-AMB-Lip) possesses excellent colloidal properties and in vitro antifungal and antileishmanial activities similar to those of the liposomal AMB preparation AmBisome. The aim of this study was to determine the biodistribution and evaluate the antileishmanial effects of DSHemsPC-AMB-Lip in Leishmania major-infected BALB/c mice. The serum profile and tissue concentrations of AMB were similar in DSHemsPC-AMB-Lip- and AmBisome-treated mice after intravenous (i.v.) injection. Multiple i.v. doses of the micellar formulation of AMB (Fungizone; 1 mg/kg of body weight), DSHemsPC-AMB-Lip (5 mg/kg), and AmBisome (5 mg/kg) were used in L. major-infected BALB/c mouse models of early and established lesions. In a model of the early lesions of cutaneous leishmaniasis (CL), the results indicated that the level of footpad inflammation was significantly (P < 0.001) lower in mice treated with DSHemsPC-AMB-Lip and AmBisome than mice treated with empty liposomes or 5% dextrose. The splenic and footpad parasite load was also significantly (P < 0.001) lower in these groups of mice than in control mice that received 5% DW or free liposome. The in vivo activity of DSHemsPC-AMB-Lip was comparable to that of AmBisome, and both provided improved results compared to those achieved with Fungizone at the designated doses. The results suggest that systemic DSHemsPC-AMB-Lip administration may be useful for the treatment of leishmaniasis, and because it costs less to produce DSHemsPC-AMB-Lip than AmBisome, DSHemsPC-AMB-Lip merits further investigation.

2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Gert-Jan Wijnant ◽  
Katrien Van Bocxlaer ◽  
Vanessa Yardley ◽  
Sudaxshina Murdan ◽  
Simon L. Croft

ABSTRACT The 4-aminoquinoline chloroquine (CQ) is clinically used in combination with doxycycline to cure chronic Q fever, as it enhances the activity of the antibiotic against the causative bacterium Coxiella burnetii residing within macrophage phagolysosomes. As there is a similar cellular host-pathogen biology for Leishmania parasites, this study aimed to determine whether such an approach could also be the basis for a new, improved treatment for cutaneous leishmaniasis (CL). We have evaluated the in vitro and in vivo activities of combinations of CQ with the standard drugs paromomycin (PM), miltefosine, and amphotericin B against Leishmania major and Leishmania mexicana. In 72-h intracellular antileishmanial assays, outcomes were variable for different drugs. Significantly, the addition of 10 μM CQ to PM reduced 50% effective concentrations (EC50s) by over 5-fold against L. major and against normally insensitive L. mexicana parasites. In murine models of L. major and L. mexicana CL, daily coadministration of 50 mg/kg of body weight PM and 25 mg/kg CQ for 10 days resulted in a significant reduction in lesion size but not in parasite load compared to those for mice given the same doses of PM alone. Overall, our data indicate that PM-CQ combination therapy is unlikely to be a potential candidate for further preclinical development.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Michel Muálem de Moraes Alves ◽  
Daniel Dias Rufino Arcanjo ◽  
Kayo Alves Figueiredo ◽  
Jéssica Sara de Sousa Macêdo Oliveira ◽  
Felipe José Costa Viana ◽  
...  

ABSTRACT In this study, we demonstrated the potential associative effect of combining conventional amphotericin B (Amph B) with gallic acid (GA) and with ellagic acid (EA) in topical formulations for the treatment of cutaneous leishmaniasis in BALB/c mice. Preliminary stability tests of the formulations and in vitro drug release studies with Amph B, GA, Amph B plus GA, EA, and Amph B plus EA were carried out, as well as assessment of the in vivo treatment of BALB/c mice infected with Leishmania major. After 40 days of infection, the animals were divided into 6 groups and treated twice a day for 21 days with a gel containing Amph B, GA, Amph B plus GA, EA, or Amph B plus EA, and the negative-control group was treated with the vehicle. In the animals that received treatment, there was reduction of the lesion size and reduction of the parasitic load. Histopathological analysis of the treatments with GA, EA, and combinations with Amph B showed circumscribed lesions with the presence of fibroblasts, granulation tissue, and collagen deposition, as well as the presence of activated macrophages. The formulations containing GA and EA activated macrophages in all evaluated parameters, resulting in the activation of cells of the innate immune response, which can generate healing and protection. GA and EA produced an associative effect with Amph B, which makes them promising for use with conventional Amph B in the treatment of cutaneous leishmaniasis.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Felipe Rodriguez ◽  
Sarah F. John ◽  
Eva Iniguez ◽  
Sebastian Montalvo ◽  
Karina Michael ◽  
...  

ABSTRACT Leishmania major is the causative agent of cutaneous leishmaniasis (CL). No human vaccine is available for CL, and current drug regimens present several drawbacks, such as emerging resistance, severe toxicity, medium effectiveness, and/or high cost. Thus, the need for better treatment options against CL is a priority. In the present study, we validate the enzyme methionine aminopeptidase 1 of L. major (MetAP1Lm), a metalloprotease that catalyzes the removal of N-terminal methionine from peptides and proteins, as a chemotherapeutic target against CL infection. The in vitro antileishmanial activities of eight novel MetAP1 inhibitors (OJT001 to OJT008) were investigated. Three compounds, OJT006, OJT007, and OJT008, demonstrated potent antiproliferative effects in macrophages infected with L. major amastigotes and promastigotes at submicromolar concentrations, with no cytotoxicity against host cells. Importantly, the leishmanicidal effect in transgenic L. major promastigotes overexpressing MetAP1Lm was diminished by almost 10-fold in comparison to the effect in wild-type promastigotes. Furthermore, the in vivo activities of OJT006, OJT007, and OJT008 were investigated in L. major-infected BALB/c mice. In comparison to the footpad parasite load in the control group, OJT008 decreased the footpad parasite load significantly, by 86%, and exhibited no toxicity in treated mice. We propose MetAP1 inhibitor OJT008 as a potential chemotherapeutic candidate against CL infection caused by L. major infection.


2015 ◽  
Vol 59 (5) ◽  
pp. 2479-2487 ◽  
Author(s):  
Keerti Jain ◽  
Ashwni Kumar Verma ◽  
Prabhat Ranjan Mishra ◽  
Narendra Kumar Jain

ABSTRACTThe present study aimed to develop an optimized dendrimeric delivery system for amphotericin B (AmB). Fifth-generation (5.0G) poly(propylene imine) (PPI) dendrimers were synthesized, conjugated with mannose, and characterized by use of various analytical techniques, including Fourier transform infrared spectroscopy (FTIR),1H nuclear magnetic resonance (1H-NMR) spectroscopic analysis, and atomic force microscopy (AFM). Mannose-conjugated 5.0G PPI (MPPI) dendrimers were loaded with AmB and evaluated for drug loading efficiency,in vitrodrug release profile, stability, hemolytic toxicity to human erythrocytes, cytotoxicity to and cell uptake by J774A.1 macrophage cells, antiparasitic activity against intracellularLeishmania donovaniamastigotes,in vivopharmacokinetic and biodistribution profiles, drug localization index, toxicity, and antileishmanial activity. AFM showed the nanometric size of the MPPI dendrimers, with a nearly globular architecture. The conjugate showed a good entrapment efficiency for AmB, along with pH-sensitive drug release. Highly significant reductions in toxicity toward human erythrocytes and macrophage cells, without compromising the antiparasitic activity of AmB, were observed. The dendrimeric formulation of AmB showed a significant enhancement of the parasiticidal activity of AmB toward intramacrophagicL. donovaniamastigotes. In thein vitrocell uptake studies, the formulation showed selectivity toward macrophages, with significant intracellular uptake. Further pharmacokinetic and organ distribution studies elucidated the controlled delivery behavior of the formulation. The drug localization index was found to increase significantly in macrophage-rich organs.In vivostudies showed a biocompatible behavior of MPPIA, with negligible toxicity even at higher doses, and promising antileishmanial activity. From the results, we concluded that surface-engineered dendrimers may serve as optimized delivery vehicles for AmB with enhanced activity and low or negligible toxicity.


2018 ◽  
Vol 63 (2) ◽  
pp. e00904-18 ◽  
Author(s):  
Celia Fernández-Rubio ◽  
Esther Larrea ◽  
José Peña Guerrero ◽  
Eduardo Sesma Herrero ◽  
Iñigo Gamboa ◽  
...  

ABSTRACTConventional chemotherapy against leishmaniasis includes agents exhibiting considerable toxicity. In addition, reports of drug resistance are not uncommon. Thus, safe and effective therapies are urgently needed. Isoselenocyanate compounds have recently been identified with potential antitumor activity. It is well known that some antitumor agents demonstrate effects againstLeishmania. In this study, thein vitroleishmanicidal activities of several organo-selenium and organo-sulfur compounds were tested againstLeishmania majorandLeishmania amazonensisparasites, using promastigotes and intracellular amastigote forms. The cytotoxicity of these agents was measured in murine peritoneal macrophages and their selectivity indexes were calculated. One of the tested compounds, the isoselenocyanate derivative NISC-6, showed selectivity indexes 2- and 10-fold higher than those of the reference drug amphotericin B when evaluated inL. amazonensisandL. major, respectively. The American strain (L. amazonensis) was less sensitive to NISC-6 thanL. major, showing a trend similar to that observed previously for amphotericin B. In addition, we also observed that NISC-6 significantly reduced the number of amastigotes per infected macrophage. On the other hand, we showed that NISC-6 decreases expression levels ofLeishmaniagenes involved in the cell cycle, such astopoisomerase-2(TOP-2),PCNA, andMCM4, therefore contributing to its leishmanicidal activity. The effect of this compound on cell cycle progression was confirmed by flow cytometry. We observed a significant increase of cells in the G1phase and a dramatic reduction of cells in the S phase compared to untreated cells. Altogether, our data suggest that the isoselenocyanate NISC-6 may be a promising candidate for new drug development against leishmaniasis.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Ren-Yi Lu ◽  
Ting-Jun-Hong Ni ◽  
Jing Wu ◽  
Lan Yan ◽  
Quan-Zhen Lv ◽  
...  

ABSTRACT In the past decades, the incidence of cryptococcosis has increased dramatically, which poses a new threat to human health. However, only a few drugs are available for the treatment of cryptococcosis. Here, we described a leading compound, NT-a9, an analogue of isavuconazole, that showed strong antifungal activities in vitro and in vivo. NT-a9 showed a wide range of activities against several pathogenic fungi in vitro, including Cryptococcus neoformans, Cryptococcus gattii, Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Candida parapsilosis, with MICs ranging from 0.002 to 1 μg/ml. In particular, NT-a9 exhibited excellent efficacy against C. neoformans, with a MIC as low as 0.002 μg/ml. NT-a9 treatment resulted in changes in the sterol contents in C. neoformans, similarly to fluconazole. In addition, NT-a9 possessed relatively low cytotoxicity and a high selectivity index. The in vivo efficacy of NT-a9 was assessed using a murine disseminated-cryptococcosis model. Mice were infected intravenously with 1.8 × 106 CFU of C. neoformans strain H99. In the survival study, NT-a9 significantly prolonged the survival times of mice compared with the survival times of the control group or the isavuconazole-, fluconazole-, or amphotericin B-treated groups. Of note, 4 and 8 mg/kg of body weight of NT-a9 rescued all the mice, with a survival rate of 100%. In the fungal-burden study, NT-a9 also significantly reduced the fungal burdens in brains and lungs, while fluconazole and amphotericin B only reduced the fungal burden in lungs. Taken together, these data suggested that NT-a9 is a promising antifungal candidate for the treatment of cryptococcosis infection.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
Lukas Page ◽  
Andrew J. Ullmann ◽  
Fabian Schadt ◽  
Sebastian Wurster ◽  
Samuel Samnick

ABSTRACT Invasive pulmonary aspergillosis and mucormycosis are life-threatening complications in immunocompromised patients. A rapid diagnosis followed by early antifungal treatment is essential for patient survival. Given the limited spectrum of biomarkers for invasive mold infections, recent studies have proposed the use of radiolabeled siderophores or antibodies as molecular probes to increase the specificity of radiological findings by nuclear imaging modalities. While holding enormous diagnostic potential, most of the currently available molecular probes are tailored to the detection of Aspergillus species, and their cost-intensive and sophisticated implementation restricts their accessibility at less specialized centers. In order to develop cost-efficient and broadly applicable tracers for pulmonary mold infections, this study established streamlined and high-yielding protocols to radiolabel amphotericin B (AMB) with the gamma emitter technetium-99m (99mTc-AMB) and the positron emitter gallium-68 (68Ga-AMB). The radiochemical purity of the resulting tracers consistently exceeded 99%, and both probes displayed excellent stability in human serum (>98% after 60 to 240 min at 37°C). The uptake kinetics by representative mold pathogens were assessed in an in vitro Transwell assay using infected endothelial cell layers. Both tracers accumulated intensively and specifically in Transwell inserts infected with Aspergillus fumigatus, Rhizopus arrhizus, and other clinically relevant mold pathogens compared with their accumulation in uninfected inserts and inserts infected with bacterial controls. Inoculum-dependent enrichment was confirmed by gamma counting and autoradiographic imaging. Taken together, this pilot in vitro study proposes 99mTc-AMB and 68Ga-AMB to be facile, stable, and specific probes, meriting further preclinical in vivo evaluation of radiolabeled amphotericin B for molecular imaging in invasive mycoses.


2016 ◽  
Vol 60 (5) ◽  
pp. 2932-2940 ◽  
Author(s):  
Douglas R. Rice ◽  
Paola Vacchina ◽  
Brianna Norris-Mullins ◽  
Miguel A. Morales ◽  
Bradley D. Smith

ABSTRACTCutaneous leishmaniasis is a neglected tropical disease that causes painful lesions and severe disfigurement. Modern treatment relies on a few chemotherapeutics with serious limitations, and there is a need for more effective alternatives. This study describes the selective targeting of zinc(II)-dipicolylamine (ZnDPA) coordination complexes towardLeishmania major, one of the species responsible for cutaneous leishmaniasis. Fluorescence microscopy ofL. majorpromastigotes treated with a fluorescently labeled ZnDPA probe indicated rapid accumulation of the probe within the axenic promastigote cytosol. The antileishmanial activities of eight ZnDPA complexes were measured using anin vitroassay. All tested complexes exhibited selective toxicity againstL. majoraxenic promastigotes, with 50% effective concentration values in the range of 12.7 to 0.3 μM. Similar toxicity was observed against intracellular amastigotes, but there was almost no effect on the viability of mammalian cells, including mouse peritoneal macrophages.In vivotreatment efficacy studies used fluorescence imaging to noninvasively monitor changes in the red fluorescence produced by an infection of mCherry-L. majorin a mouse model. A ZnDPA treatment regimen reduced the parasite burden nearly as well as the reference care agent, potassium antimony(III) tartrate, and with less necrosis in the local host tissue. The results demonstrate that ZnDPA coordination complexes are a promising new class of antileishmanial agents with potential for clinical translation.


Parasitology ◽  
2016 ◽  
Vol 143 (12) ◽  
pp. 1615-1621 ◽  
Author(s):  
RABIAA M. SGHAIER ◽  
IMEN AISSA ◽  
HANÈNE ATTIA ◽  
AYMEN BALI ◽  
PABLO A. LEON MARTINEZ ◽  
...  

SUMMARYSynthesized lipophilic tyrosyl ester derivatives with increasing lipophilicity were effective against Leishmania (L.) major and Leishmania infantum species in vitro. These findings prompted us to test in vivo leishmanicidal properties of these molecules and their potential effect on the modulation of immune responses. The experimental BALB/c model of cutaneous leishmaniasis was used in this study. Mice were infected with L. major parasites and treated with three in vitro active tyrosyl esters derivatives.Among these tested tyrosylcaprate (TyC) compounds, only TyC10 exhibited an in vivo anti-leishmanial activity, when injected sub-cutaneously (s.c.). TyC10 treatment of L. major-infected BALB/c mice resulted in a decrease of lesion development and parasite load. TyC10 s.c. treatment of non-infected mice induced an imbalance in interferon γ/interleukin 4 (IFN-γ/IL-4) ratio cytokines towards a Th1 response. Our results indicate that TyC10 s.c. treatment improves lesions’ healing and parasite clearance and may act on the cytokine balance towards a Th1 protective response by decreasing IL-4 and increasing IFN-γ transcripts. TyC10 is worthy of further investigation to uncover its mechanism of action that could lead to consider this molecule as a potential drug candidate.


2011 ◽  
Vol 56 (2) ◽  
pp. 658-665 ◽  
Author(s):  
Marie Crisel B. Erfe ◽  
Consuelo V. David ◽  
Cher Huang ◽  
Victoria Lu ◽  
Ana Claudia Maretti-Mira ◽  
...  

ABSTRACTHost defense peptides are naturally occurring molecules that play essential roles in innate immunity to infection. Based on prior structure-function knowledge, we tested two synthetic peptides (RP-1 and AA-RP-1) modeled on the conserved, microbicidal α-helical domain of mammalian CXCL4 platelet kinocidins. These peptides were evaluated for efficacy againstLeishmaniaspecies, the causative agents of the group of diseases known as leishmaniasis.In vitroantileishmanial activity was assessed against three distinctLeishmaniastrains by measuring proliferation, metabolic activity and parasite viability after exposure to various concentrations of peptides. We demonstrate that micromolar concentrations of RP-1 and AA-RP-1 caused dose-dependent growth inhibition ofLeishmaniapromastigotes. This antileishmanial activity correlated with rapid membrane disruption, as well as with a loss of mitochondrial transmembrane potential. In addition, RP-1 and AA-RP-1 demonstrated distinct and significantin vivoantileishmanial activities in a mouse model of experimental visceral leishmaniasis after intravenous administration. These results establish efficacy of RP-1 lineage synthetic peptides againstLeishmaniaspeciesin vitroand after intravenous administrationin vivoand provide further validation of proof of concept for the development of these and related systemic anti-infective peptides targeting pathogens that are resistant to conventional antibiotics.


Sign in / Sign up

Export Citation Format

Share Document