antiparasitic activity
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 123)

H-INDEX

36
(FIVE YEARS 4)

Surfaces ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 91-112
Author(s):  
Samir Mustafa Hamad ◽  
Bushra Hussain Shnawa ◽  
Parwin Jalal Jalil ◽  
Mukhtar H. Ahmed

Background: Cystic echinococcosis (CE) is a highly prevalent parasitic disease resulting from the hydatid cyst of Echinococcus granulosus. It is also described as a zoonotic disease and considered a neglected tropical infection. Aim: This study assessed the antiparasitic activity of silver nanoparticles (AgNPs), against E. granulosus infection in BALB/c mice. Methods: The green synthesis of AgNPs was accomplished using Zizyphus spina-christi leaves. AgNPs were orally administered to BALB/c mice for acute short-term toxicity evaluation, in doses of 50 mg, 100 mg, 200 mg, and 300 mg/kg, and observations for toxic signs were carried out at 24, 48 h, and 14 days, continuously. Moreover, a total of 20 mice divided into two groups were intraperitoneally administered with 1500 viable protoscoleces for secondary hydatidosis infection. Results: The results showed that AgNPs did not induce any adverse effects or signs and no death, in either group of mice. The histopathological findings in the liver, kidneys, and intestine of the mice administered with AgNPs revealed mild histological effects compared with the control ones. The treated-infected mice showed a change in the appearance of the liver hydatid cysts from hyaline to milky cloudy compared with the untreated infected mice. Conclusion: Biosynthesized AgNPs showed anti-hydatic effects and are suggested as anti-echinococcal cyst treatment.


Author(s):  
Esti Handayani Hardi ◽  
Rudy Agung Nugroho ◽  
Irawan wijaya kusuma ◽  
gina Saptiani ◽  
agustina agustina ◽  
...  

Argulus is an ectoparasite that frequently infects goldfish, with severe effects and a high death rate. The use of plant extracts has been widely reported to have antiparasitic activities, including one of the solasodine compounds in sour eggplant extracts. This research evaluated the antiparasitic activities of Compositions A (Solanum ferox and Zingiber zerumbet extract at 400 and 200 ppm, respectively), B (SFE and Boesenbergia pandurata at 900 ppm), and C (single Solanum ferox at 400 ppm). The research stages comprised 1) isolation and analysis of solasodine content in sour eggplant extracts and its extract composition, 2) in vitro antiparasitic activities on Argulus sp. at doses of 50 and 100 ppm with a testing time of 60–240 minutes, and 3) in vivo antiparasitic activities on Argulus sp. on goldfish at a dose of 100 ppm and observation for 2–12 hours of medication. The results showed that sour eggplant extracts had a solasodine concentration of 7.151 mg/L, whereas the derivative compositions A, B, and C were 656, 485, and 295 ppm, respectively. The in vitro testing demonstrated that composition A was effective for killing approximately 80–100% of Argulus, whereas compositions B and C killed 80–90% and 60–70%, respectively. Viewed from the effectiveness for killing parasites, the result was excellent (above 50%). The in vivo medication test was continued using three extract compositions at a dose of 100 ppm. Compositions A, B, and C were found to be capable of releasing 81.33, 75.67, and 71.00 arguli, respectively, per fish. We concluded that the single SFE extract and a concoction with BPE and ZZE had reasonable antiparasitic activity, whereas the concoction of SFE and ZZE killed more Argulus parasites at a higher rate.


2021 ◽  
pp. 1-26
Author(s):  
Panayiotis V. Ioannou

Contrary to P(V) compounds, As(V) compounds can very easily reduced by thiols to As(III) thiolates that are deemed to play a central role in the metabolism of arsenic and therefore a review on the preparation and properties of the title thiolates can be of interest. The preparation of trithioarsenites, dithioarsonites and thioarsinites involves reactions of a thiol with a proper As(V) or As(III) precursor via 4-centered transition states or a thiolate by SN2 mechanisms. Convenient precursors are the solids As2O3, arsonic and arsinic acids, although for the latter two acids the separation of the product from the co-produced disulfides can be problematic. Only a few crystal structures have been reported and involve only trithioarsenites. From their chemical properties, the hydrolyses, transthiolations and air oxidations are of particular interest from mechanistic and biochemical/biological points of view. Their nucleophilicity towards alkyl halides and acyl derivatives revealed unexpected behavior. Although these molecules have many free electron pairs only three reports were found pertaining to their reaction with metal cations (Hg2+) and metal carbonyls; the mercuric complexes being not characterized. Only a few studies appeared for the action of the title compounds towards enzymes, while the patent literature revealed that they have bactericidal, fungicidal and insecticidal activities for agricultural applications, some have antiparasitic activity on animals and a few are carcinostatic.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1872
Author(s):  
Chinedu Ogbonnia Egwu ◽  
Jean-Michel Augereau ◽  
Karine Reybier ◽  
Françoise Benoit-Vical

Several measures are in place to combat the worldwide spread of malaria, especially in regions of high endemicity. In part, most common antimalarials, such as quinolines and artemisinin and its derivatives, deploy an ROS-mediated approach to kill malaria parasites. Although some antimalarials may share similar targets and mechanisms of action, varying levels of reactive oxygen species (ROS) generation may account for their varying pharmacological activities. Regardless of the numerous approaches employed currently and in development to treat malaria, concerningly, there has been increasing development of resistance by Plasmodium falciparum, which can be connected to the ability of the parasites to manage the oxidative stress from ROS produced under steady or treatment states. ROS generation has remained the mainstay in enforcing the antiparasitic activity of most conventional antimalarials. However, a combination of conventional drugs with ROS-generating ability and newer drugs that exploit vital metabolic pathways, such antioxidant machinery, could be the way forward in effective malaria control.


2021 ◽  
Vol 14 (11) ◽  
pp. 1199
Author(s):  
Federica Bruno ◽  
Germano Castelli ◽  
Fabrizio Vitale ◽  
Simone Catanzaro ◽  
Valeria Vitale Badaco ◽  
...  

Background: Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi. No progress in the treatment of this pathology has been made since Nifurtimox was introduced more than fifty years ago, and this drug is considered very aggressive and may cause several adverse effects. This drug currently has severe limitations, including a high frequency of undesirable side effects and limited efficacy and availability, so research to discover new drugs for the treatment of Chagas disease is imperative. Many drugs available on the market are natural products as found in nature or compounds designed based on the structure and activity of these natural products. Methods: This study evaluated the in vitro antiparasitic activity of a series of previously synthesized stilbene and terphenyl compounds in T. cruzi epimastigotes and intracellular amastigotes. The action of the most selective compounds was investigated by flow cytometric analysis to evaluate the mechanism of cell death. The ability to induce apoptosis or caspase-1 inflammasomes was assayed in macrophages infected with T. cruzi after treatment, comparing it with that of Nifurtimox. Results: The stilbene ST18 was the most potent compound of the series. It was slightly less active than Nifurtimox in epimastigotes but most active in intracellular amastigotes. Compared to Nifurtimox, it was markedly less cytotoxic when tested in vitro on normal cells. ST18 was able to induce a marked increase in parasites positive for Annexin V and monodansylcadaverine. Moreover, ST18 induced the activation, in infected macrophages, of caspase-1, a conserved enzyme that plays a major role in controlling parasitemia, host survival and the onset of the adaptive immune response in Trypanosoma infection. Conclusions: The antiparasitic activity of ST18 together with its ability to activate caspase-1 in infected macrophages and its low toxicity toward normal cells makes this compound interesting for further clinical investigation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Madhumanti Barman ◽  
Sonam Kamble ◽  
Sonti Roy ◽  
Vasundhra Bhandari ◽  
Siva Singothu ◽  
...  

The apicomplexan parasite, Theileria annulata, is the most prevalent hemoprotozoan in livestock, causing significant economic losses worldwide. It is essential to develop new and improved therapeutics, as current control measures are compromised by the development of resistance against the only available antitheilerial drug, buparvaquone (BPQ). Histone deacetylase inhibitors (HDACi) were shown to treat cancer effectively and revealed in vitro antiparasitic activity against apicomplexan parasites such as Plasmodium and Toxoplasma. In this study, we investigated the antitheilerial activity of the four anti-cancer HDACi (vorinostat, romidepsin, belinostat, and panobinostat) against the schizont stage of T. annulata parasites. All four HDACi showed potent activity and increased hyperacetylation of the histone-4 protein. However, based on the low host cell cytotoxicity and IC50 values, vorinostat (0.103 μM) and belinostat (0.069 μM) were the most effective showing antiparasitic activity. The parasite-specific activities of the HDACi (vorinostat and belinostat) were evaluated by western blotting using parasite-specific antibodies and in silico analysis. Both vorinostat and belinostat reduced the Theileria infected cell viability by downregulating anti-apoptotic proteins and mitochondrial dysfunction, leading to caspase-dependent cell apoptosis. The HDACi caused irreversible and antiproliferative effects on the Theileria infected cell lines. Our results collectively showed that vorinostat and belinostat could be used as an alternative therapy for treating Theileria parasites.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 637
Author(s):  
Natalya N. Besednova ◽  
Tatyana S. Zaporozhets ◽  
Boris G. Andryukov ◽  
Sergey P. Kryzhanovsky ◽  
Svetlana P. Ermakova ◽  
...  

This review presents materials characterizing sulfated polysaccharides (SPS) of marine hydrobionts (algae and invertebrates) as potential means for the prevention and treatment of protozoa and helminthiasis. The authors have summarized the literature on the pathogenetic targets of protozoa on the host cells and on the antiparasitic potential of polysaccharides from red, brown and green algae as well as certain marine invertebrates. Information about the mechanisms of action of these unique compounds in diseases caused by protozoa has also been summarized. SPS is distinguished by high antiparasitic activity, good solubility and an almost complete absence of toxicity. In the long term, this allows for the consideration of these compounds as effective and attractive candidates on which to base drugs, biologically active food additives and functional food products with antiparasitic activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isabelle Q. Phan ◽  
Christopher A. Rice ◽  
Justin Craig ◽  
Rooksana E. Noorai ◽  
Jacquelyn R. McDonald ◽  
...  

AbstractBalamuthia mandrillaris, a pathogenic free-living amoeba, causes cutaneous skin lesions as well as granulomatous amoebic encephalitis, a ‘brain-eating’ disease. As with the other known pathogenic free-living amoebas (Naegleria fowleri and Acanthamoeba species), drug discovery efforts to combat Balamuthia infections of the central nervous system are sparse; few targets have been validated or characterized at the molecular level, and little is known about the biochemical pathways necessary for parasite survival. Current treatments of encephalitis due to B. mandrillaris lack efficacy, leading to case fatality rates above 90%. Using our recently published methodology to discover potential drugs against pathogenic amoebas, we screened a collection of 85 compounds with known antiparasitic activity and identified 59 compounds that impacted the growth of Balamuthia trophozoites at concentrations below 220 µM. Since there is no fully annotated genome or proteome of B. mandrillaris, we sequenced and assembled its transcriptome from a high-throughput RNA-sequencing (RNA-Seq) experiment and located the coding sequences of the genes potentially targeted by the growth inhibitors from our compound screens. We determined the sequence of 17 of these target genes and obtained expression clones for 15 that we validated by direct sequencing. These will be used in the future in combination with the identified hits in structure guided drug discovery campaigns to develop new approaches for the treatment of Balamuthia infections.


2021 ◽  
Author(s):  
Exequiel Porta ◽  
Shane Wilkinson ◽  
María Sol Ballari ◽  
Babu Tekwani ◽  
Guillermo Labadie

A series of thirty 1,2,3-triazolylsterols were prepared by a stereocontrolled synthesis and inspired by azasterols with proven antiparasitic activity. Ten of these compounds constitute chimeras/hybrids of AZA and 1,2,3-triazolyl azasterols. The entire library was assayed against the etiological agents of the parasites responsible of kinetoplastid diseases (L. donovani, T. cruzi and T. brucei). Several of the compounds were active at submicromolar/nanomolar concentration with excellent selectivity index, when compared to their activity in mammalian cells. Studies of the physicochemical properties in silico were conducted to rationalize the activities.


Author(s):  
Pierre Darme ◽  
Jérémy Spalenka ◽  
Jane Hubert ◽  
Sandie Escotte-binet ◽  
Laurent Debelle ◽  
...  

Toxoplasmosis is a worldwide parasitosis that affects one-third of the population. People at risk, such as immunocompromised patients (AIDS, chemotherapy treatment) or fetuses (maternal-fetal transmission) can develop severe forms of the disease. The antiparasitic activity of extracts of different polarities ( n -heptane, MeOH, MeOH/H 2 O) of ten tree species endemics to temperate regions was investigated against Toxoplasma gondii infection in vitro . Our results showed that the n -heptane extract of the black alder ( Alnus glutinosa ) exhibited a significant antiparasitic activity without any cytotoxicity at the tested concentrations, with an IC 50 of up to 25.08 μg/mL and a selectivity index higher than 3.99. The chemical profiling of this extract revealed triterpenes as major constituents. The ability of commercially available triterpene (betulin, betulinic acid, and betulone) to inhibit the growth of T. gondii was evaluated and showed growth inhibition rates of 44%, 49%, and 99% at 10 μM, respectively.


Sign in / Sign up

Export Citation Format

Share Document