scholarly journals Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing

2016 ◽  
Vol 60 (8) ◽  
pp. 5054-5058 ◽  
Author(s):  
Hongfei Mi ◽  
Dai Wang ◽  
Yunxin Xue ◽  
Zhi Zhang ◽  
Jianjun Niu ◽  
...  

ABSTRACTThe contribution of reactive oxygen species (ROS) to antimicrobial lethality was examined by treatingEscherichia coliwith dimethyl sulfoxide (DMSO), an antioxidant solvent frequently used in antimicrobial studies. DMSO inhibited killing by ampicillin, kanamycin, and two quinolones and had little effect on MICs. DMSO-mediated protection correlated with decreased ROS accumulation and provided evidence for ROS-mediated programmed cell death. These data support the contribution of ROS to antimicrobial lethality and suggest caution when using DMSO-dissolved antimicrobials for short-time killing assays.

2015 ◽  
Vol 66 (10) ◽  
pp. 2869-2876 ◽  
Author(s):  
Irene Serrano ◽  
María C. Romero-Puertas ◽  
Luisa M. Sandalio ◽  
Adela Olmedilla

2021 ◽  
Vol 22 (23) ◽  
pp. 12942
Author(s):  
Chanjuan Ye ◽  
Shaoyan Zheng ◽  
Dagang Jiang ◽  
Jingqin Lu ◽  
Zongna Huang ◽  
...  

Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions. This review describes the mechanisms underlying plant PCD, the key functions of mitochondria and chloroplasts in PCD, and the relationship between mitochondria and chloroplasts during PCD. Additionally, the review discusses the factors that regulate PCD. Most importantly, in this review, we summarise the sites of production of ROS and discuss the roles of ROS that not only trigger multiple signalling pathways leading to PCD but also participate in the execution of PCD, highlighting the importance of ROS in PCD.


2019 ◽  
Vol 116 (20) ◽  
pp. 10064-10071 ◽  
Author(s):  
Yuzhi Hong ◽  
Jie Zeng ◽  
Xiuhong Wang ◽  
Karl Drlica ◽  
Xilin Zhao

Antimicrobial efficacy, which is central to many aspects of medicine, is being rapidly eroded by bacterial resistance. Since new resistance can be induced by antimicrobial action, highly lethal agents that rapidly reduce bacterial burden during infection should help restrict the emergence of resistance. To improve lethal activity, recent work has focused on toxic reactive oxygen species (ROS) as part of the bactericidal activity of diverse antimicrobials. We report that whenEscherichia coliwas subjected to antimicrobial stress and the stressor was subsequently removed, both ROS accumulation and cell death continued to occur. Blocking ROS accumulation by exogenous mitigating agents slowed or inhibited poststressor death. Similar results were obtained with a temperature-sensitive mutational inhibition of DNA replication. Thus, bacteria exposed to lethal stressors may not die during treatment, as has long been thought; instead, death can occur after plating on drug-free agar due to poststress ROS-mediated toxicity. Examples are described in which (i) primary stress-mediated damage was insufficient to kill bacteria due to repair; (ii) ROS overcame repair (i.e., protection from anti-ROS agents was reduced by repair deficiencies); and (iii) killing was reduced by anti-oxidative stress genes acting before stress exposure. Enzymatic suppression of poststress ROS-mediated lethality by exogenous catalase supports a causal rather than a coincidental role for ROS in stress-mediated lethality, thereby countering challenges to ROS involvement in antimicrobial killing. We conclude that for a variety of stressors, lethal action derives, at least in part, from stimulation of a self-amplifying accumulation of ROS that overwhelms the repair of primary damage.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208802 ◽  
Author(s):  
Fabrizio Araniti ◽  
Aitana Costas-Gil ◽  
Luz Cabeiras-Freijanes ◽  
Antonio Lupini ◽  
Francesco Sunseri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document