scholarly journals Population Pharmacokinetics of Ciprofloxacin in Neonates and Young Infants Less than Three Months of Age

2014 ◽  
Vol 58 (11) ◽  
pp. 6572-6580 ◽  
Author(s):  
Wei Zhao ◽  
Helen Hill ◽  
Chantal Le Guellec ◽  
Tim Neal ◽  
Sarah Mahoney ◽  
...  

ABSTRACTCiprofloxacin is used in neonates with suspected or documented Gram-negative serious infections. Currently, its use is off-label partly because of lack of pharmacokinetic studies. Within the FP7 EU project TINN (Treat Infection in NeoNates), our aim was to evaluate the population pharmacokinetics of ciprofloxacin in neonates and young infants <3 months of age and define the appropriate dose in order to optimize ciprofloxacin treatment in this vulnerable population. Blood samples were collected from neonates treated with ciprofloxacin and concentrations were quantified by high-pressure liquid chromatography–mass spectrometry. Population pharmacokinetic analysis was performed using NONMEM software. The data from 60 newborn infants (postmenstrual age [PMA] range, 24.9 to 47.9 weeks) were available for population pharmacokinetic analysis. A two-compartment model with first-order elimination showed the best fit with the data. A covariate analysis identified that gestational age, postnatal age, current weight, serum creatinine concentration, and use of inotropes had a significant impact on ciprofloxacin pharmacokinetics. Monte Carlo simulation demonstrated that 90% of hypothetical newborns with a PMA of <34 weeks treated with 7.5 mg/kg twice daily and 84% of newborns with a PMA ≥34 weeks and young infants receiving 12.5 mg/kg twice daily would reach the AUC/MIC target of 125, using the standard EUCAST MIC susceptibility breakpoint of 0.5 mg/liter. The associated risks of overdose for the proposed dosing regimen were <8%. The population pharmacokinetics of ciprofloxacin was evaluated in neonates and young infants <3 months old, and a dosing regimen was established based on simulation.

2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Zhong-Ren Shi ◽  
Xing-Kai Chen ◽  
Li-Yuan Tian ◽  
Ya-Kun Wang ◽  
Gu-Ying Zhang ◽  
...  

ABSTRACT Ceftazidime, a third-generation cephalosporin, can be used for the treatment of adults and children with infections due to susceptible bacteria. To date, the pediatric pharmacokinetic data are limited in infants, and therefore we aimed to evaluate the population pharmacokinetics of ceftazidime in infants and to define the appropriate dose to optimize ceftazidime treatment. Blood samples were collected from children treated with ceftazidime, and concentrations of the drug were quantified by high-performance liquid chromatography with UV detection (HPLC-UV). A population pharmacokinetic analysis was performed using NONMEM software ( version 7.2.0). Fifty-one infants ( age range, 0.1 to 2.0 years ) were included. Sparse pharmacokinetic samples ( n = 90 ) were available for analysis. A one-compartment model with first-order elimination showed the best fit with the data. A covariate analysis identified that body weight and creatinine clearance (CL CR ) were significant covariates influencing ceftazidime clearance. Monte Carlo simulation demonstrated that the currently used dosing regimen of 50 mg / kg twice daily was associated with a high risk of underdosing in infants. In order to reach the target of 70% of the time that the free antimicrobial drug concentration exceeds the MIC ( fT >MIC ), 25 mg/kg every 8 h (q8h) and 50 mg/kg q8h were required for MICs of 4 and 8 mg/liter, respectively. The population pharmacokinetic characteristics of ceftazidime were evaluated in infants. An evidence-based dosing regimen was established based on simulation.


2015 ◽  
Vol 101 (1) ◽  
pp. e1.31-e1
Author(s):  
Nienke J Vet ◽  
Brenda CM de Winter ◽  
Saskia N de Wildt ◽  
Bart CH van der Nagel ◽  
Catherijne AJ Knibbe ◽  
...  

ObjectivesTo develop a population pharmacokinetic model of R-albuterol and S-albuterol for children suffering from status asthmaticus following continuous intravenous administration.MethodsAt the pediatric ICU 19 children suffering from severe status asthmaticus were treated using continuous intravenous albuterol in doses based on clinical symptoms (range 0.1–10 µg/kg/min). During therapy 111 blood samples were collected and analysed for R- and S-albuterol using a validated LC/MS-MS method. A population pharmacokinetic analysis was conducted using non-linear mixed effects modelling (NONMEM 7.2). Data was logarithmically transformed. Model selection criteria were decrease in objective function, diagnostic plots and NPDE. The covariates (range) analysed were bodyweight (7.8–70 kg), age (0.8–15.3 years), creatinine concentration (17–70 µmol/L), alanine transaminase (5–29 IU/L), and urea (1.6–4.8 mmol/L).ResultsA two-compartment model with separated clearance for R- (16.3 L/h) and S-albuterol (8.8 L/h) best described the data. Separated values for central volume of distribution (12.9 L), peripheral volume of distribution (45.2 L) and intercompartmental clearance (20.0 L/h) did not improve the model. Between-subject variability was described for clearance of R-albuterol (42%), clearance of S-albuterol (37%) and central volume of distribution (280%). Weight is a significant covariate using a power function. The exponent of the powerfunction was fixed at 0.75 for clearance and intercompartmental and at 1 for central and peripheral volume of distribution. Estimation of the exponent resulted in similar values and did not improve the model. No other covariates were identified.ConclusionThe population pharmacokinetics of R- and S-albuterol are described. This model can be used to evaluate the correlation between albuterol pharmacokinetics and effect in a population pharmacokinetic-pharmacodynamic analysis.


2016 ◽  
Vol 60 (11) ◽  
pp. 6626-6634 ◽  
Author(s):  
Stéphanie Leroux ◽  
Jean-Michel Roué ◽  
Jean-Bernard Gouyon ◽  
Valérie Biran ◽  
Hao Zheng ◽  
...  

ABSTRACTCefotaxime is one of the most frequently prescribed antibiotics for the treatment of Gram-negative bacterial sepsis in neonates. However, the dosing regimens routinely used in clinical practice vary considerably. The objective of the present study was to conduct a population pharmacokinetic study of cefotaxime in neonates and young infants in order to evaluate and optimize the dosing regimen. An opportunistic sampling strategy combined with population pharmacokinetic analysis using NONMEM software was performed. Cefotaxime concentrations were measured by high-performance liquid chromatography-tandem mass spectrometry. Developmental pharmacokinetics-pharmacodynamics, the microbiological pathogens, and safety aspects were taken into account to optimize the dose. The pharmacokinetic data from 100 neonates (gestational age [GA] range, 23 to 42 weeks) were modeled with an allometric two-compartment model with first-order elimination. The median values for clearance and the volume of distribution at steady state were 0.12 liter/h/kg of body weight and 0.64 liter/kg, respectively. The covariate analysis showed that current weight, GA, and postnatal age (PNA) had significant impacts on cefotaxime pharmacokinetics. Monte Carlo simulations demonstrated that the current dose recommendations underdosed older newborns. A model-based dosing regimen of 50 mg/kg twice a day to four times a day, according to GA and PNA, was established. The associated risk of overdose for the proposed dosing regimen was 0.01%. We determined the population pharmacokinetics of cefotaxime and established a model-based dosing regimen to optimize treatment for neonates and young infants.


2019 ◽  
Vol 8 (2) ◽  
pp. 227 ◽  
Author(s):  
Yun Kim ◽  
Su-jin Rhee ◽  
Wan Beom Park ◽  
Kyung-Sang Yu ◽  
In-Jin Jang ◽  
...  

Highly variable and non-linear pharmacokinetics of voriconazole are mainly caused by CYP2C19 polymorphisms. This study aimed to develop a mechanistic population pharmacokinetic model including the CYP2C19 phenotype, and to assess the appropriateness of various dosing regimens based on the therapeutic target. A total of 1,828 concentrations from 193 subjects were included in the population pharmacokinetic analysis. A three-compartment model with an inhibition compartment appropriately described the voriconazole pharmacokinetics reflecting auto-inhibition. Voriconazole clearance in the CYP2C19 intermediate metabolizers (IMs) and poor metabolizers (PMs) decreased by 17% and 53% compared to that in the extensive metabolizers (EMs). There was a time-dependent inhibition of clearance to 16.2% of its original value in the CYP2C19 EMs, and the extent of inhibition differed according to the CYP2C19 phenotypes. The proposed CYP2C19 phenotype-guided initial dosing regimens are 400 mg twice daily (bid) for EMs, 200 mg bid for IMs, and 100 mg bid for PMs. This CYP2C19 phenotype-guided initial dosing regimen will provide a rationale for individualizing the optimal voriconazole therapy.


2014 ◽  
Vol 58 (8) ◽  
pp. 4718-4726 ◽  
Author(s):  
Ping Liu ◽  
Diane R. Mould

ABSTRACTTo assess the pharmacokinetics (PK) of voriconazole and anidulafungin in patients with invasive aspergillosis (IA) in comparison with other populations, sparse PK data were obtained for 305 adults from a prospective phase 3 study comparing voriconazole and anidulafungin in combination versus voriconazole monotherapy (voriconazole, 6 mg/kg intravenously [IV] every 12 h [q12h] for 24 h followed by 4 mg/kg IV q12h, switched to 300 mg orally q12h as appropriate; with placebo or anidulafungin IV, a 200-mg loading dose followed by 100 mg q24h). Voriconazole PK was described by a two-compartment model with first-order absorption and mixed linear and time-dependent nonlinear (Michaelis-Menten) elimination; anidulafungin PK was described by a two-compartment model with first-order elimination. For voriconazole, the normal inverse Wishart prior approach was implemented to stabilize the model. Compared to previous models, no new covariates were identified for voriconazole or anidulafungin. PK parameter estimates of voriconazole and anidulafungin are in agreement with those reported previously except for voriconazole clearance (the nonlinear clearance component became minimal). At a 4-mg/kg IV dose, voriconazole exposure tended to increase slightly as age, weight, or body mass index increased, but the difference was not considered clinically relevant. Estimated voriconazole exposures in IA patients at 4 mg/kg IV were higher than those reported for healthy adults (e.g., the average area under the curve over a 12-hour dosing interval [AUC0–12] at steady state was 46% higher); while it is not definitive, age and concomitant medications may impact this difference. Estimated anidulafungin exposures in IA patients were comparable to those reported for the general patient population. This study was approved by the appropriate institutional review boards or ethics committees and registered on ClinicalTrials.gov (NCT00531479).


2009 ◽  
Vol 53 (8) ◽  
pp. 3430-3436 ◽  
Author(s):  
D. Plachouras ◽  
M. Karvanen ◽  
L. E. Friberg ◽  
E. Papadomichelakis ◽  
A. Antoniadou ◽  
...  

ABSTRACT Colistin is used to treat infections caused by multidrug-resistant gram-negative bacteria (MDR-GNB). It is administered intravenously in the form of colistin methanesulfonate (CMS), which is hydrolyzed in vivo to the active drug. However, pharmacokinetic data are limited. The aim of the present study was to characterize the pharmacokinetics of CMS and colistin in a population of critically ill patients. Patients receiving colistin for the treatment of infections caused by MDR-GNB were enrolled in the study; however, patients receiving a renal replacement therapy were excluded. CMS was administered at a dose of 3 million units (240 mg) every 8 h. Venous blood was collected immediately before and at multiple occasions after the first and the fourth infusions. Plasma CMS and colistin concentrations were determined by a novel liquid chromatography-tandem mass spectrometry method after a rapid precipitation step that avoids the significant degradation of CMS and colistin. Population pharmacokinetic analysis was performed with the NONMEM program. Eighteen patients (6 females; mean age, 63.6 years; mean creatinine clearance, 82.3 ml/min) were included in the study. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.046 h and 2.3 h, respectively. The clearance of CMS was 13.7 liters/h. For colistin, a one-compartment model was sufficient to describe the data, and the estimated half-life was 14.4 h. The predicted maximum concentrations of drug in plasma were 0.60 mg/liter and 2.3 mg/liter for the first dose and at steady state, respectively. Colistin displayed a half-life that was significantly long in relation to the dosing interval. The implications of these findings are that the plasma colistin concentrations are insufficient before steady state and raise the question of whether the administration of a loading dose would benefit critically ill patients.


2019 ◽  
Vol 74 (8) ◽  
pp. 2128-2138 ◽  
Author(s):  
Evelyne Jacqz-Aigrain ◽  
Stéphanie Leroux ◽  
Alison H Thomson ◽  
Karel Allegaert ◽  
Edmund V Capparelli ◽  
...  

Abstract Objectives In the absence of consensus, the present meta-analysis was performed to determine an optimal dosing regimen of vancomycin for neonates. Methods A ‘meta-model’ with 4894 concentrations from 1631 neonates was built using NONMEM, and Monte Carlo simulations were performed to design an optimal intermittent infusion, aiming to reach a target AUC0–24 of 400 mg·h/L at steady-state in at least 80% of neonates. Results A two-compartment model best fitted the data. Current weight, postmenstrual age (PMA) and serum creatinine were the significant covariates for CL. After model validation, simulations showed that a loading dose (25 mg/kg) and a maintenance dose (15 mg/kg q12h if <35 weeks PMA and 15 mg/kg q8h if ≥35 weeks PMA) achieved the AUC0–24 target earlier than a standard ‘Blue Book’ dosage regimen in >89% of the treated patients. Conclusions The results of a population meta-analysis of vancomycin data have been used to develop a new dosing regimen for neonatal use and to assist in the design of the model-based, multinational European trial, NeoVanc.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Jose Francis ◽  
Simbarashe P. Zvada ◽  
Paolo Denti ◽  
Mark Hatherill ◽  
Salome Charalambous ◽  
...  

ABSTRACT Rifapentine is a rifamycin used to treat tuberculosis. As is the case for rifampin, plasma exposures of rifapentine are associated with the treatment response. While concomitant food intake and HIV infection explain part of the pharmacokinetic variability associated with rifapentine, few studies have evaluated the contribution of genetic polymorphisms. We evaluated the effects of functionally significant polymorphisms of the genes encoding OATP1B1, the pregnane X receptor (PXR), constitutive androstane (CAR), and arylacetamide deacetylase (AADAC) on rifapentine exposure. Two studies evaluating novel regimens among southern African patients with drug-susceptible pulmonary tuberculosis were included in this analysis. In the RIFAQUIN study, rifapentine was administered in the continuation phase of antituberculosis treatment in 1,200-mg-once-weekly or 900-mg-twice-weekly doses. In the Daily RPE study, 450 or 600 mg was given daily during the intensive phase of treatment. Nonlinear mixed-effects modeling was used to describe the pharmacokinetics of rifapentine and to identify significant covariates. A total of 1,144 drug concentration measurements from 326 patients were included in the analysis. Pharmacogenetic information was available for 162 patients. A one-compartment model with first-order elimination and transit compartment absorption described the data well. In a typical patient (body weight, 56 kg; fat-free mass, 45 kg), the values of clearance and volume of distribution were 1.33 liters/h and 25 liters, respectively. Patients carrying the AA variant (65.4%) of AADAC rs1803155 were found to have a 10.4% lower clearance. HIV-infected patients had a 21.9% lower bioavailability. Once-weekly doses of 1,200 mg were associated with a reduced clearance (13.2%) compared to that achieved with more frequently administered doses. Bioavailability was 23.3% lower among patients participating in the Daily RPE study than in those participating in the RIFAQUIN study. This is the first study to report the effect of AADAC rs1803155AA on rifapentine clearance. The observed increase in exposure is modest and unlikely to be of clinical relevance. The difference in bioavailability between the two studies is probably related to the differences in food intake concomitant with the dose. HIV-coinfected patients had lower rifapentine exposures.


2011 ◽  
Vol 55 (7) ◽  
pp. 3423-3431 ◽  
Author(s):  
C. Bazzoli ◽  
H. Bénech ◽  
E. Rey ◽  
S. Retout ◽  
D. Salmon ◽  
...  

ABSTRACTThe population pharmacokinetic parameters of zidovudine (AZT), lamivudine (3TC), and their active intracellular metabolites in 75 naïve HIV-infected patients receiving an oral combination of AZT and 3TC twice daily as part of their multitherapy treatment in the COPHAR2-ANRS 111 trial are described. Four blood samples per patient were taken after 2 weeks of treatment to measure drug concentrations at steady state. Plasma AZT and 3TC concentrations were measured in 73 patients, and among those, 62 patients had measurable intracellular AZT-TP and 3TC-TP concentrations. For each drug, a joint population pharmacokinetic model was developed and we investigated the influence of different covariates. We then studied correlations between the mean plasma and intracellular concentrations of each drug. A one-compartment model with first-order absorption and elimination best described the plasma AZT concentration, with an additional compartment for intracellular AZT-TP. A similar model but with zero-order absorption was found to adequately described concentrations of 3TC and its metabolite 3TC-TP. The half-lives of AZT and 3TC were 0.81 h (94.8%) and 2.97 h (39.2%), respectively, whereas the intracellular half-lives of AZT-TP and 3TC-TP were 10.73 h (69%) and 21.16 h (44%), respectively. We found particularly a gender effect on the apparent bioavailability of AZT, as well as on the mean plasma and intracellular concentrations of AZT, which were significantly higher in females than in males. Relationships between mean plasma drug and intracellular metabolite concentrations were also highlighted both for AZT and for 3TC. Simulation with the model of plasma and intracellular concentrations for once- versus twice-daily regimens suggested that a daily dosing regimen with double doses could be appropriate.


Sign in / Sign up

Export Citation Format

Share Document