scholarly journals Preclinical pharmacokinetics and distribution to tissue of AG1343, an inhibitor of human immunodeficiency virus type 1 protease.

1996 ◽  
Vol 40 (1) ◽  
pp. 110-114 ◽  
Author(s):  
B V Shetty ◽  
M B Kosa ◽  
D A Khalil ◽  
S Webber

AG1343, a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) protease (Ki = 2 nM), was designed by protein structure-based drug design techniques. AG1343 has potent antiviral activity (95% effective dose = 0.04 microgram/ml) against a number of HIV-1 strains in acute and chronic models of infection. As part of its preclinical development, the oral bioavailability of AG1343 in rats, dogs, monkeys, and marmosets was determined and its tissue distribution in rats was evaluated. There were no major interspecies differences in AG1343 pharmacokinetics. Following intravenous administration, the elimination half-life of AG1343 ranged from 1 to 1.4 hr. The total volume of distribution (2 to 7 liters/kg) exceeded the volume of total body water, indicating extensive tissue distribution. Systemic clearance of AG1343 (1 to 4 liters/kg) in the different species corresponded to hepatic blood flow, suggesting possible hepatic involvement in the elimination of AG1343. Following oral administration, peak levels in plasma ranged from 0.34 microgram/ml after treatment with 10 mg/kg of body weight in the dog to 1.7 micrograms/ml after dosing with 50 mg/kg in the rat. Because of the slow absorption of AG1343, plasma concentrations of AG1343 exceeding that required for 95% inhibition of HIV-1 replication were maintained for up to 7 h after a single oral dose in all species evaluated. Average oral bioavailability of AG1343 ranged from 17% in the marmoset to 47% in the dog. Studies of distribution to tissue in the rat after oral administration of 14C-AG1343 established extensive distribution with concentrations in most tissues exceeding that found in plasma. Of particular significance were high levels of AG1343 equivalent in mesenteric lymph nodes (32.05 micrograms/g) and spleen tissue (9.33 micrograms/g). The major excretory route for AG1343 was via feces, with 100% of the dose recovered by 48 h. Results from these studies demonstrate that AG1343 is orally bioavailable and that levels in plasma in the therapeutic range are achievable and are maintained for prolonged periods in the animal models tested. On the basis of these and other findings, AG1343 was developed for further testing in human subjects.

2006 ◽  
Vol 51 (2) ◽  
pp. 429-437 ◽  
Author(s):  
Zhijun Zhang ◽  
Wen Xu ◽  
Yung-Hyo Koh ◽  
Jae Hoon Shim ◽  
Jean-Luc Girardet ◽  
...  

ABSTRACT Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are important components of current combination therapies for human immunodeficiency virus type 1 (HIV-1) infection. However, their low genetic barriers against resistance development, cross-resistance, and serious side effects can compromise the benefits of the two current drugs in this class (efavirenz and nevirapine). In this study, we report a novel and potent NNRTI, VRX-480773, that inhibits viruses from efavirenz-resistant molecular clones and most NNRTI-resistant clinical HIV-1 isolates tested. In vitro mutation selection experiments revealed that longer times were required for viruses to develop resistance to VRX-480773 than to efavirenz. RT mutations selected by VRX-480773 after 3 months of cell culture in the presence of 1 nM VRX-480773 carried the Y181C mutation, resulting in a less-than-twofold increase in resistance to the compound. A virus containing the double mutation V106I-Y181C emerged after 4 months, causing a sixfold increase in resistance. Viruses containing additional mutations of D123G, F227L, and T369I emerged when the cultures were incubated with increasing concentrations of VRX-480773. Most of the resistant viruses selected by VRX-480773 are susceptible to efavirenz. Oral administration of VRX-480773 to dogs resulted in plasma concentrations that were significantly higher than those required for the inhibition of wild-type and mutant viruses. These results warrant further clinical development of VRX-480773 for the treatment of HIV infection in both NNRTI-naive and -experienced patients.


2007 ◽  
Vol 51 (9) ◽  
pp. 3264-3272 ◽  
Author(s):  
Jörn Lötsch ◽  
Sebastian Harder ◽  
Martin Stürmer ◽  
Hans-Wilhelm Doerr ◽  
Gerd Geisslinger ◽  
...  

ABSTRACT The objective of this study was to identify parameters among saquinavir pharmacokinetics, patients' demographics or comedications, to be addressed for improved personalized therapy. The presence of human immunodeficiency virus type 1 (HIV-1) RNA at therapy week 48 (principal target parameter), CD4 cell count at week 48, infections and side effects during 48 weeks, indicators of liver toxicity and lipid abnormalities at week 48, and a 12-h saquinavir plasma concentration-versus-time profile were assessed in 56 patients receiving saquinavir-ritonavir (1,000 and 100 mg, respectively) twice daily (44 therapy-naïve and 12 antiretrovirally pretreated patients) for association with saquinavir plasma concentrations, demographics, baseline values of target parameters, and coadministered antiretrovirals. Antiretroviral failure was observed in 8 of the 56 patients in whom HIV-1 RNA was detectable at week 48. This therapeutic failure was not associated with individual saquinavir pharmacokinetics. More likely, therapeutic failure was related to incidences interfering with antiretroviral therapy, causing therapy interruptions or incompliance. Weak associations were, however, seen between high maximum saquinavir plasma concentrations and both CD4 counts of ≥200 cells μl−1 at week 48 (P = 0.014) and constitutional side effects during 48 weeks (P = 0.002). However, patients with high CD4 counts and constitutional side effects were not identical (P = 0.53). Saquinavir therapeutic drug monitoring in patients infected with protease inhibitor-susceptible HIV-1 taking saquinavir-ritonavir (1,000 and 100 mg, respectively) is not demanded for improving the antiretroviral effect. It may be contemplated in cases with constitutional side effects or low CD4 counts with weak immune responses.


1994 ◽  
Vol 70 (6) ◽  
Author(s):  
Marisa Márcia Mussi-Pinhata ◽  
Maria Célia C. Ferez ◽  
Dimas T. Covas ◽  
Geraldo Duarte ◽  
Márcia L. Isaac ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1798
Author(s):  
Grant R. Campbell ◽  
Stephen A. Spector

Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.


Sign in / Sign up

Export Citation Format

Share Document