scholarly journals Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems.

1996 ◽  
Vol 40 (2) ◽  
pp. 349-353 ◽  
Author(s):  
K Senda ◽  
Y Arakawa ◽  
K Nakashima ◽  
H Ito ◽  
S Ichiyama ◽  
...  

A total of 3,700 Pseudomonas aeruginosa isolates were collected from 17 general hospitals in Japan from 1992 to 1994. Of these isolates, 132 carbapenem-resistant strains were subjected to DNA hybridization analysis with the metallo-beta-lactamase gene (blaIMP)-specific probe. Fifteen strains carrying the metallo-beta-lactamase gene were identified in five hospitals in different geographical areas. Three strains of P. aeruginosa demonstrated high-level imipenem resistance (MIC, > or = 128 micrograms/ml), two strains exhibited low-level imipenem resistance (MIC, < or = 4 micrograms/ml), and the rest of the strains were in between. These results revealed that the acquisition of a metallo-beta-lactamase gene alone does not necessarily confer elevated resistance to carbapenems. In several strains, the metallo-beta-lactamase gene was carried by large plasmids, and carbapenem resistance was transferred from P. aeruginosa to Escherichia coli by electroporation in association with the acquisition of the large plasmid. Southern hybridization analysis and genomic DNA fingerprinting profiles revealed different genetic backgrounds for these 15 isolates, although considerable similarity was observed for the strains isolated from the same hospital. These findings suggest that the metallo-beta-lactamase-producing P. aeruginosa strains are not confined to a unique clonal lineage but proliferated multifocally by plasmid-mediated dissemination of the metallo-beta-lactamase gene in strains of different genetic backgrounds. Thus, further proliferation of metallo-beta-lactamase-producing strains with resistance to various beta-lactams may well be inevitable in the future, which emphasizes the need for early recognition of metallo-beta-lactamase-producing strains, rigorous infection control, and restricted clinical use of broad-spectrum beta-lactams including carbapenems.

1995 ◽  
Vol 39 (4) ◽  
pp. 824-829 ◽  
Author(s):  
H Ito ◽  
Y Arakawa ◽  
S Ohsuka ◽  
R Wacharotayankun ◽  
N Kato ◽  
...  

The distribution of strains producing metallo-beta-lactamase among 105 strains of Serratia marcescens was investigated. All of these strains were isolated in seven general hospitals located in Aichi Prefecture, Japan, from April to May 1993. Southern hybridization analysis suggested that four S. marcescens strains, AK9373, AK9374, AK9385, and AK9391, had a metallo-beta-lactamase genes similar to the blaIMP gene found by our laboratory (E. Osano, Y. Arakawa, R. Wacharotayankun, M. Ohta, T. Horii, H. Ito, F. Yoshimura, and N. Kato, Antimicrob. Agents Chemother. 38:71-78, 1994), and these four strains showed resistance to carbapenems as well as to the other broad-spectrum beta-lactams. In particular, strains AK9373, AK9374, and AK9391 showed an extraordinarily high-level resistance to imipenem (MICs, > or = 64 micrograms/ml), whereas strain AK9385 demonstrated moderate imipenem resistance (MIC, 8 micrograms/ml). The imipenem resistance of AK9373 was transferred to Escherichia coli CSH2 by conjugation with a frequency of 10(-5). The DNA probe of the blaIMP gene hybridized to a large plasmid (approximately 120 kb) transferred into the E. coli transconjugant as well as to the large plasmids harbored by AK9373. On the other hand, although we failed in the conjugational transfer of imipenem resistance from strains AK9374, AK9385, and AK9391 to E. coli CSH2, imipenem resistance was transferred from these strains to E. coli HB101 by transformation. A plasmid (approximately 25 kb) was observed in each transformant which acquired imipenem resistance. The amino acid sequence at the N terminus of the enzyme purified from strain AK9373 was identical to that of the metallo-beta-lactamase IMP-1. In contrast, strains ES9348, AK9386, and AK93101, which were moderately resistant to imipenem (MICs, > or = 4 to < or = 8 micrograms/ml), had no detectable blaIMP gene. As a conclusion, 19% of clinically isolated S. marcescens strains in Aichi Prefecture, Japan, in 1993 were resistant to imipenem (MICs, > or = 2 micrograms/ml), and strains which showed high-level imipenem resistance because of acquisition of a plasmid-mediated blaIMP-like metallo-beta-lactamase gene had already proliferated as nosocomial infections, at least in a general hospital.


1996 ◽  
Vol 34 (12) ◽  
pp. 2909-2913 ◽  
Author(s):  
K Senda ◽  
Y Arakawa ◽  
S Ichiyama ◽  
K Nakashima ◽  
H Ito ◽  
...  

2020 ◽  
Vol 25 (3) ◽  
pp. 301-307
Author(s):  
M. Duygu Aksoy ◽  
H. Murat Tuğrul

Introduction: Carbapenem resistant Pseudomonas aeruginosa strains cause serious problems in treatment. A large number of identified metallo-beta-lactamase (MBL) enzymes produced by P. aeruginosa are one of the most important mechanisms in resistance to carbapenems. MBL genes are located on the chromosome or plasmid, and they can easily spread between different bacterial strains. The activities of these enzymes are zinc-dependent, and they are inhibited by ethylenediaminetetraacetic acid (EDTA). Therefore, this advantage is used in MBL identification tests. In this study, it was aimed to determine MBL among P. aeruginosa strains. Materials and Methods: MBL existence was investigated in 35 P. aeruginosa strains accepted to be mildly susceptible/resistant to any of the carbapenem group of antibiotics through phenotypic and genotypic methods. Phenotypic tests were performed as double disk synergy test (DDST), combined disk diffusion tests (CDDT) by using 0.1 M and 0.5 M EDTA, MBL E-test, and modified Hodge test (MHT). blaIMP, blaVIM, blaGIM, blaSIM, blaSPM genes and blaNDM gene were investigated by multiplex polimerase chain reaction (PCR) and PCR, respectively. Escherichia coli ATCC 25922 and P. aeruginosa ATCC 27853 standard bacteria were used in tests. VIM-1, VIM-2, IMP-13, SPM-1, NDM-1 type MBL-producing P. aeruginosa strains were used as positive controls. Results: Among the carbapenems resistant P. aeruginosa isolates, positivity of MBL was found as 54.2% by MBL E-test, 42.8% by DDST, 94.2% and 37.1% by CDDT method using 0.5 M and 0.1 M EDTA, respectively. Modified Hodge test and genotypic method did not detect MBL. Conclusion: In order to correctly evaluate the results of the phenotypic method, the investigation of resistance genes by molecular methods is also required. The most common metallo-beta-lactamase enzymes responsible for resistance to carbapenem in Pseudomonas were not observed. It was thought that different mechanisms might be responsible for the identified carbapenem resistance.


1996 ◽  
Vol 40 (11) ◽  
pp. 2488-2493 ◽  
Author(s):  
P Mugnier ◽  
P Dubrous ◽  
I Casin ◽  
G Arlet ◽  
E Collatz

A clinical strain of Pseudomonas aeruginosa, PAe1100, was found to be resistant to all antipseudomonal beta-lactam antibiotics and to aminoglycosides, including gentamicin, amikacin, and isepamicin. PAe1100 produced two beta-lactamases, TEM-2 (pI 5.6) and a novel, TEM-derived extended-spectrum beta-lactamase called TEM-42 (pI 5.8), susceptible to inhibition by clavulanate, sulbactam, and tazobactam. Both enzymes, as well as the aminoglycoside resistance which resulted from AAC(3)-IIa and AAC(6')-I production, were encoded by an 18-kb nonconjugative plasmid, pLRM1, that could be transferred to Escherichia coli by transformation. The gene coding for TEM-42 had four mutations that led to as many amino acid substitutions with respect to TEM-2: Val for Ala at position 42 (Ala42), Ser for Gly238, Lys for Glu240, and Met for Thr265 (Ambler numbering). The double mutation Ser for Gly238 and Lys for Glu240, which has so far only been described in SHV-type but not TEM-type enzymes, conferred concomitant high-level resistance to cefotaxime and ceftazidime. The novel, TEM-derived extended-spectrum beta-lactamase appears to be the first of its class to be described in P. aeruginosa.


2019 ◽  
Vol 11 (02) ◽  
pp. 138-143 ◽  
Author(s):  
Ronni Mol Joji ◽  
Nouf Al-Rashed ◽  
Nermin Kamal Saeed ◽  
Khalid Mubarak Bindayna

Abstract INTRODUCTION: Carbapenem-resistant Pseudomonas aeruginosa has emerged as a life-threatening infectious agent worldwide. Carbapenemase genes are reported to be some of the most common mechanisms for carbapenem resistance in P. aeruginosa. No reports are available from the Kingdom of Bahrain about carbapenem resistance and the underlying cause. In this study, we determined to study the presence of the metallo-beta-lactamase (M β L) genes of VIM family and NDM-1 in carbapenem-resistant P. aeruginosa strains. METHODOLOGY: Fifty carbapenem-resistant P. aeruginosa isolates were obtained from three main hospitals of Bahrain. They were subjected to antimicrobial susceptibility testing by disc diffusion test. Subsequently, MβL was detected by imipenem-ethylene diamine tetraacetic acid (EDTA) combined disc test and conventional polymerase chain reaction. RESULTS: Among 50 P. aeruginosa strains, 40 (80%) were imipenem resistant. Among the 40 imipenem-resistant strains, 35 (87.5%) strains were positive for the imipenem-EDTA combined disc test, and 21 (52%) were carrying MβL genes. Nineteen (47.5%) strains were positive for the VIM gene; one (2.5%) strain was carrying the NDM-1 gene, while one strain was carrying both the VIM and NDM-1 genes. None of the imipenem sensitive strains carried the VIM or NDM-1 gene. CONCLUSION: This is the first study to report the presence of the VIM family gene and NDM-1 genes in imipenem-resistant P. aeruginosa isolates in the Kingdom of Bahrain. The study also confirms the multiple drug resistance by the MβL strains, attention should therefore from now on, be focused on prevention of further spread of such isolates by firm infection control measures, and to reduce its threat to public health.


2009 ◽  
Vol 53 (11) ◽  
pp. 4783-4788 ◽  
Author(s):  
José-Manuel Rodríguez-Martínez ◽  
Laurent Poirel ◽  
Patrice Nordmann

ABSTRACT The contributions of different mechanisms of resistance to carbapenems among a collection of imipenem- and meropenem-nonsusceptible Pseudomonas aeruginosa isolates were investigated. This screening included the recently reported extended-spectrum cephalosporinases (ESACs) weakly hydrolyzing carbapenems. Eighty-seven percent of the studied isolates were resistant to imipenem. Genes encoding metallo-β-lactamases or carbapenem-hydrolyzing oxacillinases were not identified. The main mechanism associated with imipenem resistance was the loss of outer membrane protein OprD. Identification of overexpressed ESACs and loss of OprD were observed for 65% of the isolates, all being fully resistant to imipenem. Resistance to meropenem was observed in 78% of the isolates, with all but one also being resistant to imipenem. Overexpression of the MexAB-OprM, MexXY-OprM, or MexCD-OprJ efflux systems was observed in 60% of the isolates, suggesting the contribution of efflux mechanisms in resistance to meropenem. The loss of porin OprD and the overproduction of ESACs were observed in 100% and 92% of the meropenem-resistant isolates, respectively. P. aeruginosa can very often accumulate different resistance mechanisms, including ESAC production, leading to carbapenem resistance.


Sign in / Sign up

Export Citation Format

Share Document