scholarly journals 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity.

1997 ◽  
Vol 41 (5) ◽  
pp. 1082-1093 ◽  
Author(s):  
S M Daluge ◽  
S S Good ◽  
M B Faletto ◽  
W H Miller ◽  
M H St Clair ◽  
...  

1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human leukemic and liver tumor cell lines. 1592U89 had excellent oral bioavailability (105% in the rat) and penetrated the CNS (rat brain and monkey cerebrospinal fluid) as well as AZT. Having demonstrated an excellent preclinical profile, 1592U89 has progressed to clinical evaluation in HIV-infected patients.

2002 ◽  
Vol 46 (11) ◽  
pp. 3428-3436 ◽  
Author(s):  
Fatih M. Uckun ◽  
Sanjive Qazi ◽  
Sharon Pendergrass ◽  
Elizabeth Lisowski ◽  
Barbara Waurzyniak ◽  
...  

ABSTRACT We have evaluated the clinical potential of stavudine-5′-(p-bromophenyl methoxyalaninyl phosphate(stampidine [STAMP]), a novel aryl phosphate derivative of stavudine, as a new anti-human immunodeficiency virus (anti-HIV) agent, by examining its acute, subacute, and chronic toxicity profile in mice as well as by testing its antiviral activity in a surrogate human peripheral blood lymphocyte (Hu-PBL)-SCID mouse model of human AIDS. STAMP was very well tolerated in BALB/c and CD-1 mice, without any detectable acute or subacute toxicity at single intraperitoneal or oral bolus doses as high as 500 mg/kg of body weight. Notably, daily administration of STAMP intraperitoneally or orally for up to 8 consecutive weeks was not associated with any detectable toxicity at cumulative dose levels as high as 6.4 g/kg. Micromolar concentrations of the active STAMP metabolite in plasma were rapidly achieved and maintained for more than 4 h after parenteral as well as oral administration of a nontoxic 100-mg/kg bolus dose of STAMP. In accordance with its favorable pharmacokinetic profile and in vitro potency, STAMP exhibited dose-dependent and potent in vivo anti-HIV activity in Hu-PBL-SCID mice against a genotypically and phenotypically nucleoside analog reverse transcriptase inhibitor (NRTI)-resistant clinical HIV type 1 (HIV-1) isolate (BR/92/019; D67N, L214F, T215D, K219Q) at nontoxic dose levels. The remarkable in vivo safety and potency of STAMP warrants the further development of this promising new antiretroviral agent for possible clinical use in patients harboring NRTI-resistant HIV-1.


1997 ◽  
Vol 8 (3) ◽  
pp. 205-214 ◽  
Author(s):  
DL Taylor ◽  
PS Ahmed ◽  
TM Brennan ◽  
CG Bridges ◽  
AS Tyms ◽  
...  

MDL 74,695, a novel dipeptide-like compound containing the ‘difluorostatone type’ transition state mimic and a potent inhibitor of the human immunodeficiency virus (HIV) proteinase, was investigated for anti-HIV activity in vitro. The compound showed selective inhibition of both HIV-1 and HIV-2 in MT-4 cells. A potent antiviral effect against a range of clinical isolates of HIV-1 cultured in human peripheral blood mononuclear cells and primary monocytes was also demonstrated. The antiviral activity of MDL 74,695 against viruses resistant to a range of reverse transcriptase inhibitors was equivalent to the wild-type. In rats MDL 74,695 (30 mg kg−1) was 4.9% orally bioavailable and maintained levels above the in vitro 50% inhibitory concentration (IC50) for approximately 3 h. Viruses with reduced sensitivity to MDL 74,695 and saquinavir were selected in cell culture by continuous passage in increasing drug concentrations, and first appeared after 20 and 17 passages, respectively. Amino acid changes were identified at positions 48 (glycine to valine), 50 (isoleucine to valine) and 82 (valine to either isoleucine or alanine) in various combinations for MDL 74,695-resistant viruses. For saquinavir-resistant viruses changes were identified at positions 48 (glycine to valine) and 90 (leucine to methionine). Studies using MDL 74,695, saquinavir and a third proteinase inhibitor indinavir, indicated that virus selected in the presence of MDL 74,695, with amino acid exchanges at positions 48 and 82 showed cross-resistance to saquinavir. However, viruses selected in the presence of MDL 74,695 with amino acid exchanges at positions 50 and 82 showed no significant change in sensitivity to saquinavir. Likewise, viruses selected in the presence of saquinavir with amino acid exchanges at positions 48 and 90 remained sensitive to MDL 74,695. All viruses selected after growth in the presence of either MDL 74,695 or saquinavir showed little or no resistance to indinavir.


2007 ◽  
Vol 51 (11) ◽  
pp. 4036-4043 ◽  
Author(s):  
Serge Dandache ◽  
Guy Sévigny ◽  
Jocelyn Yelle ◽  
Brent R. Stranix ◽  
Neil Parkin ◽  
...  

ABSTRACT Despite the success of highly active antiretroviral therapy, the current emergence and spread of drug-resistant variants of human immunodeficiency virus (HIV) stress the need for new inhibitors with distinct properties. We designed, produced, and screened a library of compounds based on an original l-lysine scaffold for their potentials as HIV type 1 (HIV-1) protease inhibitors (PI). One candidate compound, PL-100, emerged as a specific and noncytotoxic PI that exhibited potent inhibition of HIV-1 protease and viral replication in vitro (Ki , ∼36 pM, and 50% effective concentration [EC50], ∼16 nM, respectively). To confirm that PL-100 possessed a favorable resistance profile, we performed a cross-resistance study using a panel of 63 viral strains from PI-experienced patients selected for the presence of primary PI mutations known to confer resistance to multiple PIs now in clinical use. The results showed that PL-100 retained excellent antiviral activity against almost all of these PI-resistant viruses and that its performance in this regard was superior to those of atazanavir, amprenavir, indinavir, lopinavir, nelfinavir, and saquinavir. In almost every case, the increase in the EC50 for PL-100 observed with viruses containing multiple mutations in protease was far less than that obtained with the other drugs tested. These data underscore the potential for PL-100 to be used in the treatment of drug-resistant HIV disease and argue for its further development.


2000 ◽  
Vol 74 (18) ◽  
pp. 8252-8261 ◽  
Author(s):  
Hui Zhang ◽  
Roger J. Pomerantz ◽  
Geethanjali Dornadula ◽  
Yong Sun

ABSTRACT Virion infectivity factor (Vif) is a protein encoded by human immunodeficiency virus types 1 and 2 (HIV-1 and -2) and simian immunodeficiency virus, plus other lentiviruses, and is essential for viral replication either in vivo or in culture for nonpermissive cells such as peripheral blood lymphoid cells, macrophages, and H9 T cells. Defects in the vif gene affect virion morphology and reverse transcription but not the expression of viral components. It has been shown that Vif colocalizes with Gag in cells and Vif binds to the NCp7 domain of Gag in vitro. However, it seems that Vif is not specifically packaged into virions. The molecular mechanism(s) for Vif remains unknown. In this report, we demonstrate that HIV-1 Vif is an RNA-binding protein and specifically binds to HIV-1 genomic RNA in vitro. Further, Vif binds to HIV-1 RNA in the cytoplasm of virus-producing cells to form a 40S mRNP complex. Coimmunoprecipitation and in vivo UV cross-linking assays indicated that Vif directly interact with HIV-1 RNA in the virus-producing cells. Vif-RNA binding could be displaced by Gag-RNA binding, suggesting that Vif protein in the mRNP complex may mediate viral RNA interaction with HIV-1 Gag precursors. Furthermore, we have demonstrated that these Vif mutants that lose the RNA binding activity in vitro do not supportvif-deficient HIV-1 replication in H9 T cells, suggesting that the RNA binding capacity of Vif is important for its function. Further studies regarding Vif-RNA interaction in virus-producing cells will be important for studying the function of Vif in the HIV-1 life cycle.


2001 ◽  
Vol 75 (8) ◽  
pp. 3916-3924 ◽  
Author(s):  
Karen M. Duus ◽  
Eric D. Miller ◽  
Jonathan A. Smith ◽  
Grigoriy I. Kovalev ◽  
Lishan Su

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is frequently attenuated after long-term culture in vitro. The attenuation process probably involves mutations of functions required for replication and pathogenicity in vivo. Analysis of attenuated HIV-1 for replication and pathogenicity in vivo will help to define these functions. In this study, we examined the pathogenicity of an attenuated HIV-1 isolate in a laboratory worker accidentally exposed to a laboratory-adapted HIV-1 isolate. Using heterochimeric SCID-hu Thy/Liv mice as an in vivo model, we previously defined HIV-1 env determinants (HXB/LW) that reverted to replicate in vivo (L. Su, H. Kaneshima, M. L. Bonyhadi, R. Lee, J. Auten, A. Wolf, B. Du, L. Rabin, B. H. Hahn, E. Terwilliger, and J. M. McCune, Virology 227:46–52, 1997). Here we further demonstrate that HIV-1 replication in vivo can be separated from its pathogenic activity, in that the HXB/LW virus replicated to high levels in SCID-hu Thy/Liv mice, with no significant thymocyte depletion. Restoration of the nef gene in the recombinant HXB/LW genome restored its pathogenic activity, with no significant effect on HIV-1 replication in the thymus. Our results suggest that in vitro-attenuated HIV-1 lacks determinants for pathogenicity as well as for replication in vivo. Our data indicate that (i) the replication defect can be recovered in vivo by mutations in the envgene, without an associated pathogenic phenotype, and (ii)nef can function in the HXB/LW clone as a pathogenic factor that does not enhance HIV-1 replication in the thymus. Furthermore, the HXB/LW virus may be used to study mechanisms of HIV-1nef-mediated pathogenesis in vivo.


2000 ◽  
Vol 74 (17) ◽  
pp. 7699-7707 ◽  
Author(s):  
Tim Beaumont ◽  
Silvia Broersen ◽  
Ad van Nuenen ◽  
Han G. Huisman ◽  
Ana-Maria de Roda Husman ◽  
...  

ABSTRACT Development of disease is extremely rare in chimpanzees when inoculated with either T-cell-line-adapted neutralization-sensitive or primary human immunodeficiency virus type 1 (HIV-1), at first excluding a role for HIV-1 neutralization sensitivity in the clinical course of infection. Interestingly, we observed that short-term in vivo and in vitro passage of primary HIV-1 isolates through chimpanzee peripheral blood mononuclear cells (PBMC) resulted in a neutralization-sensitive phenotype. Furthermore, an HIV-1 variant reisolated from a chimpanzee 10 years after experimental infection was still sensitive to neutralization by soluble CD4, the CD4 binding site recognizing antibody IgG1b12 and autologous chimpanzee serum samples, but had become relatively resistant to neutralization by polyclonal human sera and neutralizing monoclonal antibodies. The initial adaptation of HIV-1 to replicate in chimpanzee PBMC seemed to coincide with a selection for viruses with low replicative kinetics. Neither coreceptor usage nor the expression level of CD4, CCR5, or CXCR4 on chimpanzee PBMC compared to human cells could explain the phenotypic changes observed in these chimpanzee-passaged viruses. Our data suggest that the increased neutralization sensitivity of HIV-1 after replication in chimpanzee cells may in part contribute to the long-term asymptomatic HIV-1 infection in experimentally infected chimpanzees.


2004 ◽  
Vol 78 (11) ◽  
pp. 5835-5847 ◽  
Author(s):  
Deborah J. Lee ◽  
W. E. Robinson

ABSTRACT The diketo acids are potent inhibitors of human immunodeficiency virus (HIV) integrase (IN). Mutations in IN, T66I, S153Y, and M154I, as well as T66I-S153Y and T66I-M154I double mutations, confer resistance to diketo acids (D. J. Hazuda et al., Science 287:646-650, 2000). The effects of these IN mutations on viral replication, enzymatic activity, and susceptibility to other HIV inhibitors are reported herein. By immunofluorescence assay and real-time PCR, all mutant viruses demonstrated a modest delay in viral spread compared to that of reference HIV. These viruses also showed a statistically significant defect in integration without defects in reverse transcription. Recombinant IN containing S153Y, T66I, and M154I-T66I mutations had an approximately twofold decrease in both disintegration and 3′-end-processing-strand transfer activities in vitro. In contrast, IN containing M154I demonstrated a greater than twofold increase in specific activity in both reactions. All mutant HIVs were resistant to l-chicoric acid, a dicaffeoyltartaric acid IN inhibitor, both in tissue culture and in biochemical assays, yet remained susceptible to the reverse transcriptase inhibitors zidovudine and nevirapine. Thus, IN mutations conferring resistance to the diketo acids can yield integration defects, attenuated catalysis in vitro, and cross-resistance to l-chicoric acid.


2005 ◽  
Vol 79 (21) ◽  
pp. 13579-13586 ◽  
Author(s):  
W. David Wick ◽  
Otto O. Yang ◽  
Lawrence Corey ◽  
Steven G. Self

ABSTRACT The antiviral role of CD8+ cytotoxic T lymphocytes (CTLs) in human immunodeficiency virus type 1 (HIV-1) infection is poorly understood. Specifically, the degree to which CTLs reduce viral replication by killing HIV-1-infected cells in vivo is not known. Here we employ mathematical models of the infection process and CTL action to estimate the rate that CTLs can kill HIV-1-infected cells from in vitro and in vivo data. Our estimates, which are surprisingly consistent considering the disparities between the two experimental systems, demonstrate that on average CTLs can kill from 0.7 to 3 infected target cells per day, with the variability in this figure due to epitope specificity or other factors. These results are compatible with the observed decline in viremia after primary infection being primarily a consequence of CTL activity and have interesting implications for vaccine design.


1992 ◽  
Vol 3 (2) ◽  
pp. 107-112 ◽  
Author(s):  
D. Kinchington ◽  
J. J. Harvey ◽  
T. J. O'Connor ◽  
B. C. N. M. Jones ◽  
K. G. Devine ◽  
...  

A number of zidovudine phosphoramidate and phosphorodiamidate derivatives were prepared, including some previously unreported benzyl esterified amino acyl compounds. These were found to be active in vitro against the human immunodeficiency virus (HIV-1), and were tested subsequently in the S+L-tissue culture assay against urethane leukaemia virus (ULV), a murine leukaemia virus (MuLV). The fifteen compounds tested showed a similar range of activity against the two viruses. No active compounds were missed in the MuLV system which was usually more sensitive to antiviral effects. Five compounds showed some toxicity to the mouse cells only. We are using this system in parallel with HIV assays to identify those derivatives which will be tested subsequently against a murine retrovirus in vivo.


Sign in / Sign up

Export Citation Format

Share Document