scholarly journals In Vitro Activities of Cefminox against Anaerobic Bacteria Compared with Those of Nine Other Compounds

1998 ◽  
Vol 42 (3) ◽  
pp. 495-501 ◽  
Author(s):  
Dianne B. Hoellman ◽  
Sheila K. Spangler ◽  
Michael R. Jacobs ◽  
Peter C. Appelbaum

ABSTRACT The agar dilution MIC method was used to test the activity of cefminox, a β-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active β-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 μg/ml and an MIC90 of 16.0 μg/ml. Other β-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0 μg/ml for cefoxitin, 2.0 and 128.0 μg/ml for cefotetan, 2.0 and 64.0 μg/ml for moxalactam, 4.0 and >128.0 μg/ml for ceftizoxime, 16.0 and >128.0 μg/ml for cefotiam, 8.0 and >128.0 μg/ml for cefamandole, and 4.0 and 128.0 μg/ml for cefoperazone. The clindamycin MIC50 and MIC90 were 0.5 and 8.0 μg/ml, respectively, and the metronidazole MIC50 and MIC90 were 1.0 and 4.0 μg/ml, respectively. Cefminox was especially active against Bacteroides fragilis(MIC90, 2.0 μg/ml), Bacteroides thetaiotaomicron (MIC90, 4.0 μg/ml), fusobacteria (MIC90, 1.0 μg/ml), peptostreptococci (MIC90, 2.0 μg/ml), and clostridia, including Clostridium difficile (MIC90, 2.0 μg/ml). Time-kill studies performed with six representative anaerobic species revealed that at the MIC all compounds except ceftizoxime were bactericidal (99.9% killing) against all strains after 48 h. At 24 h, only cefminox and cefoxitin at 4× the MIC and cefoperazone at 8× the MIC were bactericidal against all strains. After 12 h, at the MIC all compounds except moxalactam, ceftizoxime, cefotiam, cefamandole, clindamycin, and metronidazole gave 90% killing of all strains. After 3 h, cefminox at 2× the MIC produced the most rapid effect, with 90% killing of all strains.

2003 ◽  
Vol 47 (11) ◽  
pp. 3667-3671 ◽  
Author(s):  
A. Liebetrau ◽  
A. C. Rodloff ◽  
J. Behra-Miellet ◽  
L. Dubreuil

ABSTRACT The antimicrobial activities of garenoxacin and eight other antibiotics against 641 anaerobic isolates were evaluated with the NCCLS agar dilution method. Overall, the MICs of garenoxacin for 50 and 90% of the strains tested (in micrograms per milliliter) were as follows: Bacteroides fragilis group, 0.5 and 2; Prevotella spp., 0.25 and 2; Fusobacterium spp., 0.25 and 0.5; Porphyromonas spp., 0.125 and 0.25; Bilophila wadsworthia, 0.5 and 1; Veillonella spp., 0.25 and 0.5; Clostridium spp., 0.25 and 1; Clostridium difficile, 2 and >64; Bifidobacterium spp., 1 and 2; Eggerthella lenta, 0.25 and 1; Propionibacterium spp., 0.5 and 0.5; gram-positive cocci, 0.125 and 0.25.


2006 ◽  
Vol 50 (8) ◽  
pp. 2728-2731 ◽  
Author(s):  
Kerin L. Tyrrell ◽  
Diane M. Citron ◽  
Yumi A. Warren ◽  
Helen T. Fernandez ◽  
C. Vreni Merriam ◽  
...  

ABSTRACT Daptomycin has in vitro activity against gram-positive anaerobic bacteria, although limited numbers of species have been tested. We studied the in vitro activities of daptomycin, vancomycin, and penicillin against more than 100 strains each of Clostridium difficile, C. perfringens, Finegoldia magna, and Propionibacterium acnes. Daptomycin Etest MICs and results from time-kill studies were determined for selected strains. For 392 of 421 strains (93%), daptomycin was inhibitory at ≤1 μg/ml, including 15 of 16 strains of C. difficile with elevated linezolid MICs of 8 and 16 μg/ml, all 32 strains with moxifloxacin MICs of ≥4 μg/ml, and all 16 strains resistant to clindamycin. Daptomycin MICs were also ≤1 μg/ml for all 16 F. magna strains resistant to clindamycin and all 32 strains resistant to tetracycline. Only one strain, a C. perfringens strain, had a MIC of >2 μg/ml to daptomycin. Eighty-five and 92.5% of the Etest MICs were within 1 dilution of the agar dilution method for all drugs at 24 and 48 h, respectively. In time-kill studies, a C. difficile strain was inhibited by both daptomycin and vancomycin at 1, 2, 4, 8, and 24 h; colony counts were decreased by 2.3 to 2.9 log at 24 h. Vancomycin was not bactericidal for C. perfringens; however, daptomycin showed bactericidal activity as early as 1 h at four and eight times the MIC and at 2 and 4 h at two and four times the MIC.


1996 ◽  
Vol 40 (9) ◽  
pp. 2232-2235 ◽  
Author(s):  
H M Wexler ◽  
E Molitoris ◽  
D Molitoris ◽  
S M Finegold

The antimicrobial activity of trovafloxacin for 557 strains of anaerobic bacteria was determined by the National Committee for Clinical Laboratory Standards-approved Wadsworth agar dilution technique. The species tested included Bacteroides fragilis (n = 91), other members of the B. fragilis group (n = 130), Campylobacter gracilis (n = 15), other Bacteroides spp. (n = 16), Prevotella spp. (n = 49), Porphyromonas spp. (n = 15), Fusobacterium spp. (n = 62), Bilophila wadsworthia (n = 24), Sutterella wadsworthensis (n = 21), Clostridium spp. (n = 61), Peptostreptococcus spp. (n = 38), and gram-positive non-spore-forming rods (n = 35). Trovafloxacin inhibited all strains of B. fragilis at < or = 0.5 microgram/ml, 99% of other B. fragilis group species at < or = 2 micrograms/ml, and 96% of all anaerobes tested at < or = 2 micrograms/ml.


1999 ◽  
Vol 43 (8) ◽  
pp. 2027-2031 ◽  
Author(s):  
Kim L. Credito ◽  
Lois M. Ednie ◽  
Michael R. Jacobs ◽  
Peter C. Appelbaum

ABSTRACT Time-kill studies examined the activities of telithromycin (HMR 3647), erythromycin A, azithromycin, clarithromycin, roxithromycin, clindamycin, pristinamycin, amoxicillin-clavulanate, and metronidazole against 11 gram-positive and gram-negative anaerobic bacteria. Time-kill studies were carried out with the addition of Oxyrase in order to prevent the introduction of CO2. Macrolide-azalide-ketolide MICs were 0.004 to 32.0 μg/ml. Of the latter group, telithromycin had the lowest MICs, especially against non-Bacteroides fragilis group strains, followed by azithromycin, clarithromycin, erythromycin A, and roxithromycin. Clindamycin was active (MIC ≤ 2.0 μg/ml) against all anaerobes except Peptostreptococcus magnus and Bacteroides thetaiotaomicron, while pristinamycin MICs were 0.06 to 4.0 μg/ml. Amoxicillin-clavulanate had MICs of ≤1.0 μg/ml, while metronidazole was active (MICs, 0.03 to 2.0 μg/ml) against all exceptPropionibacterium acnes. After 48 h at twice the MIC, telithromycin was bactericidal (≥99.9% killing) against 6 strains, with 99% killing of 9 strains and 90% killing of 10 strains. After 24 h at twice the MIC, 90, 99, and 99.9% killing of nine, six, and three strains, respectively, occurred. Lower rates of killing were seen at earlier times. Similar kill kinetics relative to the MIC were seen with other macrolides. After 48 h at the MIC, clindamycin was bactericidal against 8 strains, with 99 and 90% killing of 9 and 10 strains, respectively. After 24 h, 90% killing of 10 strains occurred at the MIC. The kinetics of clindamycin were similar to those of pristinamycin. After 48 h at the MIC, amoxicillin-clavulanate showed 99.9% killing of seven strains, with 99% killing of eight strains and 90% killing of nine strains. At four times the MIC, metronidazole was bactericidal against 8 of 10 strains tested after 48 h and against all 10 strains after 24 h; after 12 h, 99% killing of all 10 strains occurred.


2002 ◽  
Vol 46 (11) ◽  
pp. 3669-3675 ◽  
Author(s):  
Hannah M. Wexler ◽  
Denise Molitoris ◽  
Shahera St. John ◽  
Ann Vu ◽  
Erik K. Read ◽  
...  

ABSTRACT The activity of faropenem, a new oral penem, was tested against 579 strains of anaerobic bacteria by using the NCCLS-approved reference method. Drugs tested included amoxicillin-clavulanate, cefoxitin, clindamycin, faropenem, imipenem, and metronidazole. Of the 176 strains of Bacteroides fragilis group isolates tested, two isolates had faropenem MICs of 64 μg/ml and imipenem MICs of >32 μg/ml. Faropenem had an MIC of 16 μg/ml for an additional isolate of B. fragilis; this strain was sensitive to imipenem (MIC of 1 μg/ml). Both faropenem and imipenem had MICs of ≤4 μg/ml for all isolates of Bacteroides capillosus (10 isolates), Bacteroides splanchnicus (13 isolates), Bacteroides ureolyticus (11 isolates), Bilophila wadsworthia (11 isolates), Porphyromonas species (42 isolates), Prevotella species (78 isolates), Campylobacter species (25 isolates), Sutterella wadsworthensis (11 isolates), Fusobacterium nucleatum (19 isolates), Fusobacterium mortiferum/varium (20 isolates), and other Fusobacterium species (9 isolates). Faropenem and imipenem had MICs of 16 to 32 μg/ml for two strains of Clostridium difficile; the MICs for all other strains of Clostridium tested (69 isolates) were ≤4 μg/ml. Faropenem had MICs of 8 and 16 μg/ml, respectively, for two strains of Peptostreptococcus anaerobius (MICs of imipenem were 2 μg/ml). MICs were ≤4 μg/ml for all other strains of gram-positive anaerobic cocci (53 isolates) and non-spore-forming gram-positive rods (28 isolates). Other results were as expected and reported in previous studies. No metronidazole resistance was seen in gram-negative anaerobes other than S. wadsworthensis (18% resistant); 63% of gram-positive non-spore-forming rods were resistant. Some degree of clindamycin resistance was seen in most of the groups tested.


2007 ◽  
Vol 56 (6) ◽  
pp. 798-802 ◽  
Author(s):  
Kênia Valéria dos Santos ◽  
Cláudio Galuppo Diniz ◽  
Simone Cristina Coutinho ◽  
Ana Carolina Morais Apolônio ◽  
Luciana Geralda de Sousa-Gaia ◽  
...  

Ertapenem and piperacillin/tazobactam are β-lactam antibiotics with a broad spectrum of activity used for the treatment of mixed infections in which Bacteroides fragilis and Escherichia coli play an important aetiological role. In this study, the activities of piperacillin/tazobactam and ertapenem (MIC and time–kill kinetics) against these bacteria were compared. MICs were determined by the agar dilution method, and the time and slope of time–kill curves were analysed. In the in vitro pharmacodynamic assays, pure and mixed cultures of E. coli and B. fragilis were exposed to peak concentrations of ertapenem (8.0 μg ml−1) and piperacillin/tazobactam (64.0/8.0 μg ml−1) for 48 h. Treatment with ertapenem reduced the viability of E. coli and/or B. fragilis by 3 logs in all experiments, whereas piperacillin/tazobactam only affected the viability of B. fragilis. Both drugs exhibited their fastest rates of killing when bacteria were grown in mixed cultures. According to the results, ertapenem exhibited activity similar to that of piperacillin/tazobactam against B. fragilis alone or in mixed culture. However, ertapenem exhibited a markedly higher activity against E. coli alone or in combination with B. fragilis relative to piperacillin/tazobactam.


2012 ◽  
Vol 56 (11) ◽  
pp. 5986-5989 ◽  
Author(s):  
Manoj Kumar ◽  
Tarun Mathur ◽  
Tarani K. Barman ◽  
G. Ramkumar ◽  
Ashish Bhati ◽  
...  

ABSTRACTThe MIC90of RBx 14255, a novel ketolide, againstClostridium difficilewas 4 μg/ml (MIC range, 0.125 to 8 μg/ml), and this drug was found to be more potent than comparator drugs. Anin vitrotime-kill kinetics study of RBx 14255 showed time-dependent bacterial killing forC. difficile. Furthermore, in the hamster model ofC. difficileinfection, RBx 14255 demonstrated greater efficacy than metronidazole and vancomycin, making it a promising candidate forC. difficiletreatment.


2004 ◽  
Vol 48 (6) ◽  
pp. 2280-2282 ◽  
Author(s):  
Grit Ackermann ◽  
Birgit Löffler ◽  
Daniela Adler ◽  
Arne C. Rodloff

ABSTRACT Clostridium difficile remains the major cause of nosocomial diarrhea. Reports on impaired susceptibility of C. difficile to metronidazole and vancomycin and frequent relapses of patients after therapy necessitate the search for new substances. With this study, the activity of OPT-80, a new macrocycle, against 207 C. difficile strains and against other obligately anaerobic bacteria was tested. OPT-80 showed high in vitro activity against all C. difficile strains tested.


1997 ◽  
Vol 41 (5) ◽  
pp. 1037-1041 ◽  
Author(s):  
L M Ednie ◽  
S K Spangler ◽  
M R Jacobs ◽  
P C Appelbaum

Agar dilution methodology (with added Oxyrase in the case of the macrolide group to allow incubation without added CO2) was used to compare the activity of RU 64004, a new ketolide, with the activities of erythromycin, azithromycin, clarithromycin, roxithromycin, clindamycin, amoxicillin with and without clavulanate, piperacillin with and without tazobactam, metronidazole, and imipenem against 379 anaerobes. Overall, RU 64004 yielded an MIC at which 50% of the isolates are inhibited (MIC50) of 1.0 microg/ml and an MIC90 of 16.0 microg/ml. In comparison, MIC50s and MIC90s of erythromycin, azithromycin, clarithromycin, and roxithromycin were 2.0 to 8.0 and >64.0 microg/ml, respectively. MICs of macrolides, including RU 64004, were higher for Bacteroides ovatus, Fusobacterium varium, Fusobacterium mortiferum, and Clostridium difficile than for the other species. RU 64004 was more active against gram-positive rods and cocci, Prevotella and Porphyromonas spp., and fusobacteria other than F. mortiferum and F. varium than against the Bacteroides fragilis group. Overall MIC50s and MIC90s (in micrograms per milliliter), respectively, of other compounds were as follows: clindamycin, 1.0 and 16.0; amoxicillin, 4.0 and 64.0; amoxicillin-clavulanate, 0.5 and 4.0; piperacillin, 8.0 and >64.0; piperacillin-tazobactam, 1.0 and 16.0; metronidazole, 1.0 and 4.0; and imipenem, 0.25 and 1.0.


1997 ◽  
Vol 41 (10) ◽  
pp. 2312-2316 ◽  
Author(s):  
D M Citron ◽  
M D Appleman

Four hundred thirty-eight bacteria cultured from specimens of patients with serious intra-abdominal infections were tested by agar dilution against trovafloxacin and other quinolones and antimicrobial agents. Trovafloxacin inhibited 435 strains (99.3%) at < or =2 microg/ml. All the quinolones had similar activities against Enterobacteriaceae and Pseudomonas sp., but trovafloxacin showed superior activities against streptococci, enterococci, and anaerobic organisms. Because of its excellent in vitro activities against diverse bacteria, trovafloxacin has potential use as a single agent for polymicrobial infections.


Sign in / Sign up

Export Citation Format

Share Document