S-1153 Inhibits Replication of Known Drug-Resistant Strains of Human Immunodeficiency Virus Type 1

1998 ◽  
Vol 42 (6) ◽  
pp. 1340-1345 ◽  
Author(s):  
Tamio Fujiwara ◽  
Akihiko Sato ◽  
Mohamed El-Farrash ◽  
Shigeru Miki ◽  
Kenji Abe ◽  
...  

ABSTRACT S-1153 is a new imidazole compound that inhibits human immunodeficiency virus (HIV) type 1 (HIV-1) replication by acting as a nonnucleoside reverse transcriptase inhibitor (NNRTI). This compound inhibits replication of HIV-1 strains that are resistant to nucleoside and nonnucleoside reverse transcriptase inhibitors. S-1153 has a 50% effective concentration in the range of 0.3 to 7 ng/ml for strains with single amino acid substitutions that cause NNRTI resistance, including the Y181C mutant, and also has potent activity against clinical isolates. The emergence of S-1153-resistant variants is slower than that for nevirapine, and S-1153-resistant variants contained at least two amino acid substitutions, including F227L or L234I. S-1153-resistant variants are still sensitive to the nucleoside reverse transcriptase inhibitors zidovudine (AZT) and lamivudine. In a mouse and MT-4 (human T-cell line) in vivo HIV replication model, S-1153 and AZT administered orally showed a marked synergy for the inhibition of HIV-1 replication. S-1153 shows a significant accumulation in lymph nodes, where most HIV-1 infection is thought to occur. S-1153 may be an appropriate candidate for two- to three-drug combination therapy for HIV infection.

2006 ◽  
Vol 80 (14) ◽  
pp. 7169-7178 ◽  
Author(s):  
Robert A. Smith ◽  
Donovan J. Anderson ◽  
Bradley D. Preston

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) contains four structural motifs (A, B, C, and D) that are conserved in polymerases from diverse organisms. Motif B interacts with the incoming nucleotide, the template strand, and key active-site residues from other motifs, suggesting that motif B is an important determinant of substrate specificity. To examine the functional role of this region, we performed “random scanning mutagenesis” of 11 motif B residues and screened replication-competent mutants for altered substrate analog sensitivity in culture. Single amino acid replacements throughout the targeted region conferred resistance to lamivudine and/or hypersusceptibility to zidovudine (AZT). Substitutions at residue Q151 increased the sensitivity of HIV-1 to multiple nucleoside analogs, and a subset of these Q151 variants was also hypersusceptible to the pyrophosphate analog phosphonoformic acid (PFA). Other AZT-hypersusceptible mutants were resistant to PFA and are therefore phenotypically similar to PFA-resistant variants selected in vitro and in infected patients. Collectively, these data show that specific amino acid replacements in motif B confer broad-spectrum hypersusceptibility to substrate analog inhibitors. Our results suggest that motif B influences RT-deoxynucleoside triphosphate interactions at multiple steps in the catalytic cycle of polymerization.


2004 ◽  
Vol 48 (12) ◽  
pp. 4611-4617 ◽  
Author(s):  
Stefania Paolucci ◽  
Fausto Baldanti ◽  
Giovanni Maga ◽  
Reynel Cancio ◽  
Maurizio Zazzi ◽  
...  

ABSTRACT The frequencies of multidrug resistance-associated mutations at codons 145, 151, and 69 of the human immunodeficiency virus (HIV) reverse transcriptase (RT) gene in strains from a group of 3,595 highly active antiretroviral therapy (HAART)-experienced patients were 0.22, 2.36, and 0.86%, respectively. Several amino acid substitutions different from the recently reported Gln145Met change (S. Paolucci, F. Baldanti, M. Tinelli, G. Maga, and G. Gerna, AIDS 17:924-927, 2003) were detected at position 145. Thus, amino acid substitutions selected at position 145 were introduced into the wild-type HIV type 1 (HIV-1) RT gene by site-directed mutagenesis, and recombinant HIV strains were assayed for their drug susceptibilities. Only Met and Leu substitutions at position 145 of the HIV-1 RT conferred multidrug resistance, while other amino acid changes did not. Lower levels of replication of the Gln145Met recombinant strain compared with those of both Gln151Met and wild-type recombinant strains were observed. In in vitro inhibition assays, expression and purification of the recombinant Gln145Met HIV-1 RT revealed a strong loss of catalytic efficiency of the mutated enzyme, as well as significant resistance to both zidovudine and efavirenz. Specific amino acid substitutions in the HIV RT nucleotide-binding pocket might affect both antiretroviral drug recognition and binding and decrease the level of virus replication, possibly by interfering with the enzyme activity. This finding may explain the lower frequency of Gln145Met/Leu mutations observed compared with the frequencies of Gln151Met/Leu mutations and the insertion at position 69 in HAART-experienced patients.


2007 ◽  
Vol 81 (20) ◽  
pp. 11507-11519 ◽  
Author(s):  
Francesca Ceccherini-Silberstein ◽  
Valentina Svicher ◽  
Tobias Sing ◽  
Anna Artese ◽  
Maria Mercedes Santoro ◽  
...  

ABSTRACT Resistance to antivirals is a complex and dynamic phenomenon that involves more mutations than are currently known. Here, we characterize 10 additional mutations (L74V, K101Q, I135M/T, V179I, H221Y, K223E/Q, and L228H/R) in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase which are involved in the regulation of resistance to nonnucleoside reverse transcriptase inhibitors (NNRTIs). These mutations are strongly associated with NNRTI failure and strongly correlate with the classical NNRTI resistance mutations in a data set of 1,904 HIV-1 B-subtype pol sequences from 758 drug-naïve patients, 592 nucleoside reverse transcriptase inhibitor (NRTI)-treated but NNRTI-naïve patients, and 554 patients treated with both NRTIs and NNRTIs. In particular, L74V and H221Y, positively correlated with Y181C, were associated with an increase in Y181C-mediated resistance to nevirapine, while I135M/T mutations, positively correlated with K103N, were associated with an increase in K103N-mediated resistance to efavirenz. In addition, the presence of the I135T polymorphism in NNRTI-naïve patients significantly correlated with the appearance of K103N in cases of NNRTI failure, suggesting that I135T may represent a crucial determinant of NNRTI resistance evolution. Molecular dynamics simulations show that I135T can contribute to the stabilization of the K103N-induced closure of the NNRTI binding pocket by reducing the distance and increasing the number of hydrogen bonds between 103N and 188Y. H221Y also showed negative correlations with type 2 thymidine analogue mutations (TAM2s); its copresence with the TAM2s was associated with a higher level of zidovudine susceptibility. Our study reinforces the complexity of NNRTI resistance and the significant interplay between NRTI- and NNRTI-selected mutations. Mutations beyond those currently known to confer resistance should be considered for a better prediction of clinical response to reverse transcriptase inhibitors and for the development of more efficient new-generation NNRTIs.


2000 ◽  
Vol 74 (2) ◽  
pp. 693-701 ◽  
Author(s):  
Joseph T. C. Shieh ◽  
Julio Martín ◽  
Gordon Baltuch ◽  
Michael H. Malim ◽  
Francisco González-Scarano

ABSTRACT Microglia are the main reservoir for human immunodeficiency virus type 1 (HIV-1) in the central nervous system (CNS), and multinucleated giant cells, the result of fusion of HIV-1-infected microglia and brain macrophages, are the neuropathologic hallmark of HIV dementia. One potential explanation for the formation of syncytia is viral adaptation for these CD4+ CNS cells. HIV-1BORI-15, a virus adapted to growth in microglia by sequential passage in vitro, mediates high levels of fusion and replicates more efficiently in microglia and monocyte-derived-macrophages than its unpassaged parent (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. Gonzalez-Scarano, J. Virol. 70:7654–7662, 1996). Since the interaction between the viral envelope glycoprotein and CD4 and the chemokine receptor mediates fusion and plays a key role in tropism, we have analyzed the HIV-1BORI-15 env as a fusogen and in recombinant and pseudotyped viruses. Its syncytium-forming phenotype is not the result of a switch in coreceptor use but rather of the HIV-1BORI-15envelope-mediated fusion of CD4+CCR5+ cells with greater efficiency than that of its parental strain, either by itself or in the context of a recombinant virus. Genetic analysis indicated that the syncytium-forming phenotype was due to four discrete amino acid differences in V1/V2, with a single-amino-acid change between the parent and the adapted virus (E153G) responsible for the majority of the effect. Additionally, HIV-1BORI-15 env-pseudotyped viruses were less sensitive to decreases in the levels of CD4 on transfected 293T cells, leading to the hypothesis that the differences in V1/V2 alter the interaction between this envelope and CD4 or CCR5, or both. In sum, the characterization of the envelope of HIV-1BORI-15, a highly fusogenic glycoprotein with genetic determinants in V1/V2, may lead to a better understanding of the relationship between HIV replication and syncytium formation in the CNS and of the importance of this region of gp120 in the interaction with CD4 and CCR5.


2006 ◽  
Vol 80 (24) ◽  
pp. 12095-12101 ◽  
Author(s):  
Jing Zhou ◽  
Chin Ho Chen ◽  
Christopher Aiken

ABSTRACT The compound 3-O-(3′,3′-dimethylsuccinyl)-betulinic acid (DSB) potently and specifically inhibits human immunodeficiency virus type 1 (HIV-1) replication by delaying the cleavage of the CA-SP1 junction in Gag, leading to impaired maturation of the viral core. In this study, we investigated HIV-1 resistance to DSB by analyzing HIV-1 mutants encoding a variety of individual amino acid substitutions in the CA-SP1 cleavage site. Three of the substitutions were lethal to HIV-1 replication owing to a deleterious effect on particle assembly. The remaining mutants exhibited a range of replication efficiencies; however, each mutant was capable of replicating in the presence of concentrations of DSB that effectively inhibited wild-type HIV-1. Mutations conferring resistance to DSB also led to impaired binding of the compound to immature HIV-1 virions and loss of DSB-mediated inhibition of cleavage of Gag. Surprisingly, two of the DSB-resistant mutants retained an intermediate ability to bind the compound, suggesting that binding of DSB to immature HIV-1 particles may not be sufficient for antiviral activity. Overall, our results indicate that Gag amino acids L363 and A364 are critical for inhibition of HIV-1 replication by DSB and suggest that these residues form key contacts with the drug in the context of the assembling HIV-1 particle. These results have implications for the design of and screening for novel inhibitors of HIV-1 maturation.


2014 ◽  
Vol 8 (03) ◽  
pp. 339-348
Author(s):  
Jacques M Mokhbat ◽  
Nada M. Melhem ◽  
Ziad El-Khatib ◽  
Pierre Zalloua

Introduction: Antiretroviral therapy (ART) has been successful at decreasing the morbidity and mortality associated with human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 drug resistance (HIVDR) among ART-naive patients has been documented to compromise the success of initial therapy. This study was conducted to determine the prevalence of HIVDR mutations among newly diagnosed drug-naive HIV-infected individuals in Lebanon. Methodology: Plasma samples from 37 newly diagnosed participants at various stages of HIV-1 infection were used to determine HIV-1 RNA viral load, isolate viral RNA, and amplify DNA by RT-PCR. Purified PCR products were used to perform genotypic resistance tests. Results: The prevalence of resistance mutations to nucleoside reverse transcriptase inhibitors (NRTI), non-nucleoside reverse transcriptase inhibitors (NNRT), and protease inhibitors (PI) were 5.4%, 10.8%, and 8%, respectively. The major mutations detected in the study participants conferred resistance to NRTIs and NNRTIs recommended for HIV-1 treatment.  No significant relationship between HIV-1 viral load of participants and the mode of HIV-1 transmission or between the occurrence of HIVDR and the mode of transmission was found. Conclusions: To our knowledge, this is the first study on HIVDR mutations among newly diagnosed HIV-infected persons in Lebanon. The overall prevalence of HIVDR mutations detected in our study was 16%. Our results are important for evaluating the utility of the standard first-line regimens in use, determining the feasibility of HIVDR testing before the initiation of ART, as well as minimizing the emergence and transmission of HIVDR.


2004 ◽  
Vol 78 (18) ◽  
pp. 9987-9997 ◽  
Author(s):  
Paul L. Boyer ◽  
Tomozumi Imamichi ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT Long-term use of combination therapy against human immunodeficiency virus type (HIV-1) provides strong selective pressure on the virus, and HIV-1 variants that are resistant to multiple inhibitors have been isolated. HIV-1 variants containing amino acid substitutions within the coding region of HIV-1 reverse transcriptase (RT), such as the 3′-azido-3′-deoxythymidine (AZT)-resistant variant AZT-R (M41L/D67N/K70R/T215Y/K219Q) and a variant containing an insertion in the fingers domain (S69SGR70/T215Y), are resistant to the nucleoside RT inhibitor (NRTI) AZT because of an increase in the level of excision of AZT monophosphate (AZTMP) from the primer. While rare, variants have also been isolated which contain deletions in the RT coding region. One such virus, described by Imamichi et al. (J. Virol 74:10958-10964, 2000; J. Virol. 74:1023-1028, 2000; J. Virol. 75:3988-3992, 2001), contains numerous amino acid substitutions and a deletion of codon 67, which we have designated the Δ67 complex of mutations. We have expressed and purified HIV-1 RT containing these mutations. We compared the polymerase and pyrophosphorolysis (excision) activity of an RT with the Δ67 complex of mutations to wild-type RT and the two other AZT-resistant variants described above. All of the AZT-resistant variants we tested excise AZTMP and 9-[2-(R)-(phosphonomethoxy)propyl]adenine (PMPA [tenofovir]) from the end of a primer more efficiently than wild-type RT. Although the variant RTs excised d4TMP less efficiently than AZTMP and PMPA, they were able to excise d4TMP more efficiently than wild-type RT. HIV-1 RT containing the Δ67 complex of mutations was not able to excise as broad a range of NRTIs as the fingers insertion variant SSGR/T215Y, but it was able to polymerize efficiently with low concentrations of deoxynucleoside triphosphates and seems to be able to excise AZTMP and PMPA at lower ATP concentrations than AZT-R or SSGR/T215Y, suggesting that a virus containing the Δ67 complex of mutations would replicate reasonably well in quiescent cells, even in the presence of AZT.


Sign in / Sign up

Export Citation Format

Share Document