assembly activity
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jan L Klee ◽  
Bryan C Souza ◽  
Francesco P Battaglia

The ability to use sensory cues to inform goal directed actions is a critical component of behavior. To study how sounds guide anticipatory licking during classical conditioning, we employed high-density electrophysiological recordings from the hippocampal CA1 area and the prefrontal cortex (PFC) in mice. CA1 and PFC neurons undergo distinct learning dependent changes at the single cell level and maintain representations of cue identity at the population level. In addition, reactivation of task-related neuronal assemblies during hippocampal awake Sharp-Wave Ripples (aSWR) changed within individual sessions in CA1 and over the course of multiple sessions in PFC. Despite both areas being highly engaged and synchronized during the task, we found no evidence for coordinated single cell or assembly activity during conditioning trials or aSWR. Taken together, our findings support the notion that persistent firing and reactivation of task-related neural activity patterns in CA1 and PFC support learning during classical conditioning.


Author(s):  
Silja Häkkinen

Abstract In this work, the effect of averaging operating history parameters such as power history, boron concentration and coolant density and temperature on spent nuclear fuel properties was investigated. The examined properties were assembly activity, decay heat, photon emission rate, spontaneous fission rate and the concentration of some mobile nuclides and fissile nuclides. Calculations were performed on two similar VVER-440 fuel assemblies irradiated in different positions of the core using Serpent 2. Averaging power history over the entire irradiation history had a significant effect on assembly activity, decay heat and photon emission rate overestimating these properties approximately 70 % right after irradiation. However, the effect quickly died out and after 10 years of cooling the effect was less than 1 %. If the last cycle (3rd cycle) was modelled accurately and the power density of only the first two cycles were averaged, the differences remained always below 1 %. The effect of operating history approximations on spontaneous fission rate and the nuclide concentrations was much smaller reamaining mostly below 1.5 %. The sensitivity of nuclide concentrations to approximations in individual operating history parameters was dependent on the nuclide in question and no trend applying to all studied nuclides could be observed.


2021 ◽  
Author(s):  
Shani Folschweiller ◽  
Jonas-Frederic Sauer

Nasal breathing affects cognitive functions, but it has remained largely unclear how respiration-driven inputs shape information processing in neuronal circuits. Current theories emphasize the role of neuronal assemblies, coalitions of transiently active pyramidal cells, as the core unit of cortical network computations. Here, we show that respiration-related oscillations (RROs) directly pace the activation of neuronal assemblies in the medial prefrontal cortex (mPFC) of mice. Neuronal assemblies are more efficiently entrained than single neurons and activate preferentially during the descending phase of RROs. At the same time, overlap between individual assemblies is minimized during descending RRO due to the efficient recruitment of GABAergic neurons by assemblies. Our results thus suggest the RROs support cortical operations by defining time windows of enhanced yet segregated assembly activity.


Author(s):  
Archya Sengupta ◽  
Deepesh Kumar Padhan ◽  
Ananya Ganguly ◽  
Malini Sen

Mutations in the CCN6 (WISP3) gene are linked with a debilitating musculoskeletal disorder, termed progressive pseudorheumatoid dysplasia (PPRD). Yet, the functional significance of CCN6 in the musculoskeletal system remains unclear. Using zebrafish as a model organism, we demonstrated that zebrafish Ccn6 is present partly as a component of mitochondrial respiratory complexes in the skeletal muscle of zebrafish. Morpholino-mediated depletion of Ccn6 in the skeletal muscle leads to a significant reduction in mitochondrial respiratory complex assembly and activity, which correlates with loss of muscle mitochondrial abundance. These mitochondrial deficiencies are associated with notable architectural and functional anomalies in the zebrafish muscle. Taken together, our results indicate that Ccn6-mediated regulation of mitochondrial respiratory complex assembly/activity and mitochondrial integrity is important for the maintenance of skeletal muscle structure and function in zebrafish. Furthermore, this study suggests that defects related to mitochondrial respiratory complex assembly/activity and integrity could be an underlying cause of muscle weakness and a failed musculoskeletal system in PPRD.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shufen Li ◽  
Kirsty Y Wan ◽  
Wei Chen ◽  
Hui Tao ◽  
Xin Liang ◽  
...  

Heterodimeric motor organization of kinesin-II is essential for its function in anterograde IFT in ciliogenesis. However, the underlying mechanism is not well understood. In addition, the anterograde IFT velocity varies significantly in different organisms, but how this velocity affects ciliary length is not clear. We show that in Chlamydomonas motors are only stable as heterodimers in vivo, which is likely the key factor for the requirement of a heterodimer for IFT. Second, chimeric CrKinesin-II with human kinesin-II motor domains functioned in vitro and in vivo, leading to a ~ 2.8 fold reduced anterograde IFT velocity and a similar fold reduction in IFT injection rate that supposedly correlates with ciliary assembly activity. However, the ciliary length was only mildly reduced (~15%). Modeling analysis suggests a nonlinear scaling relationship between IFT velocity and ciliary length that can be accounted for by limitation of the motors and/or its ciliary cargoes, e.g. tubulin.


2020 ◽  
Vol 21 (19) ◽  
pp. 6983
Author(s):  
Shadi Maghool ◽  
Michael T. Ryan ◽  
Megan J. Maher

Complex IV (cytochrome c oxidase; COX) is the terminal complex of the mitochondrial electron transport chain. Copper is essential for COX assembly, activity, and stability, and is incorporated into the dinuclear CuA and mononuclear CuB sites. Multiple assembly factors play roles in the biogenesis of these sites within COX and the failure of this intricate process, such as through mutations to these factors, disrupts COX assembly and activity. Various studies over the last ten years have revealed that the assembly factor COA6, a small intermembrane space-located protein with a twin CX9C motif, plays a role in the biogenesis of the CuA site. However, how COA6 and its copper binding properties contribute to the assembly of this site has been a controversial area of research. In this review, we summarize our current understanding of the molecular mechanisms by which COA6 participates in COX biogenesis.


2020 ◽  
Author(s):  
Anouk M. Olthof ◽  
Alisa K. White ◽  
Madisen F. Lee ◽  
Almahdi Chakroun ◽  
Alice K. Abdel Aleem ◽  
...  

AbstractMutations in minor spliceosome components are linked to diseases such as Roifman syndrome, Lowry-Wood syndrome, and early-onset cerebellar ataxia (EOCA). Here we report that besides increased minor intron retention, Roifman syndrome and EOCA can also be characterized by elevated alternative splicing (AS) around minor introns. Consistent with the idea that the assembly/activity of the minor spliceosome informs AS in minor intron-containing genes (MIGs), inhibition of all minor spliceosome snRNAs led to upregulated AS. Notably, alternatively spliced MIG isoforms were bound to polysomes in the U11-null dorsal telencephalon, which suggested that aberrant MIG protein expression could contribute to disease pathogenesis. In agreement, expression of an aberrant isoform of the MIG Dctn3 by in utero electroporation, affected radial glial cell divisions. Finally, we show that AS around minor introns is executed by the major spliceosome and is regulated by U11-59K of the minor spliceosome, which forms exon-bridging interactions with proteins of the major spliceosome. Overall, we extend the exon-definition model to MIGs and postulate that disruptions of exon-bridging interactions might contribute to disease severity and pathogenesis.


2020 ◽  
Author(s):  
Shufen Li ◽  
Wei Chen ◽  
Kirsty Y Wan ◽  
Hui Tao ◽  
Xin Liang ◽  
...  

SUMMARYHeterotrimeric organization of kinesin-II is essential for its function in anterograde IFT in ciliogenesis. However, the molecular basis of forming this complex for its function is not well understood. In addition, the anterograde IFT velocity varies significantly in different organisms, but how motor speed affects ciliary length is not clear. We show that Chlamydomonas kinesin-II (CrKinesin-II) involves distinct mechanisms from mammals and C. elegans in its assembly to necessitate its function in IFT. Furthermore, chimeric CrKinesin-II with human kinesin-II motor domains functioned in vitro and in vivo, leading to a ~2.8-fold reduced anterograde IFT velocity and a similar fold reduction in IFT injection rate that supposedly correlates with ciliary assembly activity. However, the ciliary length was only mildly reduced (~15%). Modelling analyses suggest that such a non-linear scaling relationship between IFT velocity and ciliary length can be accounted for by limitation of the motors and/or its ciliary cargoes, e.g. tubulin.


Author(s):  
Jin Yang ◽  
Brent W. Anderson ◽  
Asan Turdiev ◽  
Husan Turdiev ◽  
David M. Stevenson ◽  
...  

AbstractThe alarmones pppGpp and ppGpp (collectively (p)ppGpp) protect bacterial cells from nutritional and other stresses. Here we demonstrate the physiological presence of pGpp as a third closely related alarmone in bacterial cells and also characterize and compare the proteomic targets of pGpp, ppGpp and pppGpp in Gram-positive Bacillus species. We revealed two regulatory pathways for ppGpp and pppGpp that are highly conserved across bacterial species: inhibition of purine nucleotide biosynthesis and control of ribosome assembly/activity through GTPases. Strikingly, pGpp potently regulates the purine biosynthesis pathway but does not interact with the GTPases. Importantly, we identified a key enzyme NahA that efficiently produces pGpp by hydrolyzing (p)ppGpp, thus tuning alarmone composition to uncouple the regulatory modules of the alarmones. Correspondingly, a nahA mutant displays significantly reduced pGpp levels and elevated (p)ppGpp levels, slower growth recovery from nutrient downshift, and loss of competitive fitness. These cellular consequences for regulating alarmone composition strongly implicate an expanded repertoire of alarmones in a new strategy of stress response in Bacillus and its relatives.


Sign in / Sign up

Export Citation Format

Share Document