scholarly journals Effect of the Inhibition of Protein Synthesis on the Escherichia coli Cell Envelope

1974 ◽  
Vol 6 (2) ◽  
pp. 216-224 ◽  
Author(s):  
A. S. Klainer ◽  
R. R. B. Russell
2006 ◽  
Vol 50 (1) ◽  
pp. 362-364 ◽  
Author(s):  
Xilin Zhao ◽  
Muhammad Malik ◽  
Nymph Chan ◽  
Alex Drlica-Wagner ◽  
Jian-Ying Wang ◽  
...  

ABSTRACT Inhibition of DNA replication in an Escherichia coli dnaB-22 mutant failed to block quinolone-mediated lethality. Inhibition of protein synthesis by chloramphenicol inhibited nalidixic acid lethality and, to a lesser extent, ciprofloxacin lethality in both dnaB-22 and wild-type cells. Thus, major features of quinolone-mediated lethality do not depend on ongoing replication.


Amino Acids ◽  
2019 ◽  
Vol 51 (10-12) ◽  
pp. 1577-1592 ◽  
Author(s):  
Galina V. Smirnova ◽  
Aleksey V. Tyulenev ◽  
Kseniya V. Bezmaternykh ◽  
Nadezda G. Muzyka ◽  
Vadim Y. Ushakov ◽  
...  

1970 ◽  
Vol 118 (4) ◽  
pp. 659-666 ◽  
Author(s):  
G. Turnock

A mutant of Escherichia coli with increased sensitivity to streptomycin has been studied. This strain differed from a normal strs strain in that streptomycin produced inhibition of protein synthesis and loss of viability with almost no lag period. Chloramphenicol protected a normal strs strain but not the mutant against the bactericidal action of streptomycin. The results obtained support the idea that access of streptomycin to its site of action in a normal cell is restricted, and that this restriction, which is much less effective in the mutant, probably involves a permeability barrier. Comparison of the inhibition of protein synthesis by streptomycin with concomitant changes in the distribution of polyribosomes in both strains suggested that the antibiotic can directly inhibit the translation of mRNA.


Sign in / Sign up

Export Citation Format

Share Document