scholarly journals The Extracellular Metalloprotease of Vibrio tubiashii Is a Major Virulence Factor for Pacific Oyster (Crassostrea gigas) Larvae

2008 ◽  
Vol 74 (13) ◽  
pp. 4101-4110 ◽  
Author(s):  
Hiroaki Hasegawa ◽  
Erin J. Lind ◽  
Markus A. Boin ◽  
Claudia C. Häse

ABSTRACT Vibrio tubiashii is a recently reemerging pathogen of larval bivalve mollusks, causing both toxigenic and invasive disease. Marine Vibrio spp. produce an array of extracellular products as potential pathogenicity factors. Culture supernatants of V. tubiashii have been shown to be toxic to oyster larvae and were reported to contain a metalloprotease and a cytolysin/hemolysin. However, the structural genes responsible for these proteins have yet to be identified, and it is uncertain which extracellular products play a role in pathogenicity. We investigated the effects of the metalloprotease and hemolysin secreted by V. tubiashii on its ability to kill Pacific oyster (Crassostrea gigas) larvae. While V. tubiashii supernatants treated with metalloprotease inhibitors severely reduced the toxicity to oyster larvae, inhibition of the hemolytic activity did not affect larval toxicity. We identified structural genes of V. tubiashii encoding a metalloprotease (vtpA) and a hemolysin (vthA). Sequence analyses revealed that VtpA shared high homology with metalloproteases from a variety of Vibrio species, while VthA showed high homology only to the cytolysin/hemolysin of Vibrio vulnificus. Compared to the wild-type strain, a VtpA mutant of V. tubiashii not only produced reduced amounts of protease but also showed decreased toxicity to C. gigas larvae. Vibrio cholerae strains carrying the vtpA or vthA gene successfully secreted the heterologous protein. Culture supernatants of V. cholerae carrying vtpA but not vthA were highly toxic to Pacific oyster larvae. Together, these results suggest that the V. tubiashii extracellular metalloprotease is important in its pathogenicity to C. gigas larvae.

Microbiology ◽  
2009 ◽  
Vol 155 (7) ◽  
pp. 2296-2305 ◽  
Author(s):  
Hiroaki Hasegawa ◽  
Claudia C. Häse

Vibrio tubiashii is a re-emerging pathogen of molluscs that secretes a variety of extracellular products (ECPs), including a metalloprotease and a cytolysin/haemolysin. Previously, we reported that the V. tubiashii haemolysin locus consists of two ORFs (vthB and vthA), similar to that of the homologous haemolysin genes (vvhB and vvhA) found in Vibrio vulnificus. Here, we demonstrate that the concomitant expression of both V. tubiashii genes resulted in significantly higher haemolytic activity than the vthA gene alone. In addition, we created a VthAB− mutant strain of V. tubiashii that was virtually devoid of haemolytic activity in liquid media. Interestingly, significant production of an additional haemolysin(s) was observed on blood plates. Moreover, we have previously reported that in V. tubiashii, proteolytic and haemolytic activities are inversely produced during bacterial growth. Here, we study this correlation in more detail and present evidence that the VtpA metalloprotease inhibits haemolytic activity in culture supernatants, based on the following evidence: (i) loss of metalloprotease activity by either mutation or EDTA inhibition resulted in increased haemolytic activity; (ii) overexpression of the vtpA gene resulted in decreased haemolytic activity; (iii) purified VtpA metalloprotease directly diminished haemolytic activity by purified VthA haemolysin. Importantly, we found not only that vthAB gene expression remained high throughout growth but also that there were no dramatic differences in vthAB gene expression between the parent and VtpA− mutant strains. Thus, our results strongly suggest that the V. tubiashii metalloprotease directly targets its haemolysin.


Sign in / Sign up

Export Citation Format

Share Document