haemolytic activity
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 74)

H-INDEX

39
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Kai Hilpert ◽  
Jurnorain Gani ◽  
Christoph Rumancev ◽  
Nathan Simpson ◽  
Paula Matilde Lopez-Perez ◽  
...  

Antimicrobial peptides (AMPs) are a promising class of compounds being developed against multi-drug resistant bacteria. Hybridization has been reported to increase antimicrobial activity. Here, two proline-rich peptides (consP1: VRKPPYLPRPRPRPL-CONH2 and Bac5-v291: RWRRPIRRRPIRPPFWR-CONH2) were combined with two arginine-isoleucine-rich peptides (optP1: KIILRIRWR-CONH2 and optP7: KRRVRWIIW-CONH2). Proline-rich antimicrobial peptides (PrAMPs) are known to inhibit the bacterial ribosome, shown also for Bac5-v291, whereas it is hypothesized a “dirty drug” model for the arginine-isoleucine-rich peptides. That hypothesis was underpinned by transmission electron microscopy and biological small-angle X-ray scattering (BioSAXS). The strength of BioSAXS is the power to detect ultrastructural changes in millions of cells in a short time (seconds) in a high-throughput manner. This information can be used to classify antimicrobial compounds into groups according to the ultrastructural changes they inflict on bacteria and how the bacteria react towards that assault. Based on previous studies, this correlates very well with different modes of action. Due to the novelty of this approach direct identification of the target of the antimicrobial compound is not yet fully established, more research is needed. More research is needed to address this limitation. The hybrid peptides showed a stronger antimicrobial activity compared to the proline-rich peptides, except when compared to Bac5-v291 against E. coli. The increase in activity compared to the arginine-isoleucine-rich peptides was up to 6-fold, however, it was not a general increase but was dependent on the combination of peptides and bacteria. BioSAXS experiments revealed that proline-rich peptides and arginine-isoleucine-rich peptides induce very different ultrastructural changes in E. coli, whereas a hybrid peptide (hyP7B5GK) shows changes, different to both parental peptides and the untreated control. These different ultrastructural changes indicated that the mode of action of the parental peptides might be different from each other as well as from the hybrid peptide hyP7B5GK. All peptides showed very low haemolytic activity, some of them showed a 100-fold or larger therapeutic window, demonstrating the potential for further drug development.


2021 ◽  
Vol 20 (2) ◽  
pp. e898
Author(s):  
Adelodun L. Kolapo ◽  
Raoofat O. Salami ◽  
Gbemisola O. Onipede

The aim of this work was to report on molecular identification and technological properties of the yeast flora isolated from spontaneously fermented cassava waste pulp. This was done with a view of obtaining yeast strains that could be used as a starter culture for the fermentation of cassava waste pulp. Molecular identification was based on the nucleotide sequence of the ITS region of the genomic DNA of the yeast isolates while the technological properties evaluated include linamarase (U/mL), gelatinase, and haemolytic activity; growth at pH 2.5 and tolerance to 2 % bile salt. All the representative five isolated yeasts were identified as Geotrichum silvicola KLP04 – KLP08. The isolates exhibited linamarase activity ranging between 3.3 and 4.2 with strain KLP04 having the highest value and strain KLP05 the least. None of the isolates demonstrated gelatinase and haemolytic activity except strain KLP08 which was partially haemolytic. All the examined yeasts exhibited good growth at pH 2.5, with strain KLP08 having the highest viable counts of 4.1 log10cfu/ml and strain KLP04 the least value of 3.5 log10cfu/ml after 72 h of growth. All the identified yeasts showed strain-specific tolerance to 2% bile salt with strain KLP04 having the highest viable count of 4.3 log10cfu/ml and strain KLP08 the least value of 2.2 log10cfu/ml at the end of 72 h of incubation. Based on all the examined technological properties, Candida silvicola KLP04 strain had the highest potential to be considered for starter culture for the fermentation of cassava waste pulp.


2021 ◽  
Author(s):  
Kai Hilpert ◽  
Jurnorain Gani ◽  
Christoph Rumancev ◽  
Nathan Simpson ◽  
Paula Matilde Lopez-Perez ◽  
...  

Antimicrobial peptides (AMPs) are a promising class of compounds being developed against multi-drug resistant bacteria. Hybridization has been reported to increase antimicrobial activity. Here, two proline-rich peptides (consP1: VRKPPYLPRPRPRPL-CONH2 and Bac5-v291: RWRRPIRRRPIRPPFWR-CONH2) were combined with two arginine-isoleucine-rich peptides (optP1: KIILRIRWR-CONH2 and optP7: KRRVRWIIW-CONH2). Proline-rich antimicrobial peptides (PrAMPs) are known to inhibit the bacterial ribosome, shown also for Bac5-v291, whereas it is hypothesized a dirty drug model for the arginine-isoleucine-rich peptides. That hypothesis was underpinned by transmission electron microscopy and biological small-angle X-ray scattering (BioSAXS). The hybrid peptides showed a stronger antimicrobial activity compared to the proline-rich peptides, except when compared to Bac5-v291 against E. coli. The increase in activity compared to the arginine-isoleucine-rich peptides was up to 6-fold, however, it was not a general increase but was dependent on the combination of peptides and bacteria. BioSAXS experiments revealed that proline-rich peptides and arginine-isoleucine-rich peptides induce very different ultrastructural changes in E. coli, whereas a hybrid peptide (hyP7B5GK) shows changes, different to both parental peptides and the untreated control. These different ultrastructural changes indicated that the mode of action of the parental peptides is different from each other as well as from the hybrid peptide hyP7B5GK. All peptides showed very low haemolytic activity, some of them showed a 100-fold or larger therapeutic window, demonstrating the potential for further drug development.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1328
Author(s):  
Ahmed H. Abed ◽  
Esraa F. Hegazy ◽  
Sherif A. Omar ◽  
Rehab M. Abd El-Baky ◽  
Ahmed A. El-Beih ◽  
...  

Staphylococcus species cause diseases in animals and humans. The prevalence and antimicrobial profiles of Staphylococcus spp. in animals and human samples in the Minya Governorate, Egypt, were determined, and resistance- and virulence-associated genes were observed in multidrug-resistant (MDR) isolates. Moreover, the antibacterial effect of carvacrol essential oil (EO) on the MDR isolates was studied. A total of 216 samples were aseptically collected from subclinically mastitic cow’s milk (n = 100), sheep abscesses (n = 25) and humans (n = 91). Out of 216 samples, a total of 154 single Staphylococcus species (71.3%) were isolated. The most frequent bacterial isolates were S. aureus (43%), followed by S. schleiferi (25%), S. intermedius (12%), S. xylosus (12%), S. haemolyticus (4.5%), S. epidermidis (2%) and S. aurecularis (1%). Haemolytic activity and biofilm production were detected in 77 and 47% of isolates, respectively. Antimicrobial susceptibility testing showed a high degree of resistance to the most commonly used antimicrobials in human and veterinary practices. The mecA, vanA, vanC1 and ermC resistance genes were detected in 93, 42, 83 and 13% of isolates, respectively. Moreover, hla, icaA and icaD virulence genes were detected in 50, 75 and 78% of isolates, respectively. Carvacrol effectively inhibited the growth of all tested isolates at concentrations of 0.1, 0.05 and 0.04% while a concentration of 0.03% inhibited 75% of isolates. Interestingly, some phenotypic changes were observed upon treatment with a carvacrol oil concentration of 0.03%. All the treated MDR Staphylococcus isolates changed from multidrug resistant to either susceptible or intermediately susceptible to 2–3 antimicrobials more than parental bacterial isolates. Real-time PCR was applied for the detection of the differential expression of mecA and vanC1 genes before and after treatment with carvacrol which revealed a mild reduction in both genes’ expression after treatment. Staphylococcus spp. Containing MDR genes are more likely to spread between humans and animals. From these results, carvacrol EO is a promising natural alternative to conventional antimicrobials for pathogens impacting human health and agriculture due to its potential antimicrobial effect on MDR pathogens; even in sub-lethal doses, carvacrol EO can affect their phenotypic properties and genes’ expression.


2021 ◽  
Vol 883 (1) ◽  
pp. 012007
Author(s):  
A Akhdiya ◽  
R A Sanjaya ◽  
Wartono

Abstract The long term excessive use of pesticides can lead to their residues accumulation in the soils. Soil microbes were considered to convert the residues into harmless compounds, however the indigenous soil microbes having those beneficial properties are limited. Therefore this study aimed to isolate, select and identify the fenobucarb insecticide-degrading bacteria from agricultural soils. The soil samples were collected from the vegetable fields in Pangalengan, West Java, Indonesia. Isolation of the bacteria was conducted using Nitrate Mineral Salt Agar suplemented by 100 ppm of a fenobucarb. The bacteria isolates were selected based on its hypersensitive response, haemolytic activity, and its ability to degrade fenobucarb. The selected isolates was identified base on sequences of 16S rRNA gene. Twenty nine bacteria were isolated from four soil samples and 23 of the isolates were not potentially phytopathogenic and non haemolytic. The best three isolates that could degrade 94.2%, 94.5% and 95.47% fenobucarb residue are B41, B54 and B83 isolates, respectively. The 16S rDNA Sequence analysis showed that B41 and B83 isolates have 100% similarity to Bacillus thuringiensis MYBT 18426B54, while B54 isolate has 99% similarity to Bacillus luciferensis LMG 18422. These isolates are potential to be developed as a bioremediation agent.


2021 ◽  
Author(s):  
Akil LOMANI ◽  
Dennis S Nielsen ◽  
Larbi Ahmed Amine ◽  
Tahri Ahmed ◽  
Mediani Ahmed

Abstract Milk and indigenous fermented, milk based products are a rich source of lactic acid bacteria (LAB) and may serve as a source of potential probiotics. In the present study LAB were isolated from raw cows’ milk sampled at five different Algerian farms. A total of 24 Gram positive, catalase negative isolates where identified to species level using a combination of (GTG) 5-based rep-PCR fingerprinting and 16S rRNA gene sequencing. All isolates were identified as Enterococcus faecium and all isolates had highly similar rep-PCR profiles. Four representative isolates were screened for acid tolerance, bile salts tolerance, antimicrobial susceptibility, antibacterial activity and haemolysis. The four selected strains all exhibited good tolerance to low pH (2, 3, and 4), and to bile salts (concentrations of 0.5%, 1%, and 2%) and were sensitive to chloramphenicol, vancomycin, tetracycline, gentamicine and peniciline G, but were resistant to oxaciline. Cell-free supernatants of the four tested strains all inhibited Staphylococcus aureus, Escherichia coli and Listeria monocytogenes but not Salmonella Typhi. No haemolytic activity was observed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jenny Clarke ◽  
Murielle Baltazar ◽  
Mansoor Alsahag ◽  
Stavros Panagiotou ◽  
Marion Pouget ◽  
...  

AbstractGroup A Streptoccocus (GAS) is among the most diverse of all human pathogens, responsible for a range of clinical manifestations, from mild superficial infections such as pharyngitis to serious invasive infections such as necrotising fasciitis and sepsis. The drivers of these different disease phenotypes are not known. The GAS cholesterol-dependent cytolysin, Streptolysin O (SLO), has well established cell and tissue destructive activity. We investigated the role of SLO in determining disease outcome in vivo, by using two different clinical lineages; the recently emerged hypervirulent outbreak emm type 32.2 strains, which result in sepsis, and the emm type 1.0 strains which cause septic arthritis. Using clinically relevant in vivo mouse models of sepsis and a novel septic arthritis model, we found that the amount and activity of SLO was vital in determining the course of infection. The emm type 32.2 strain produced large quantities of highly haemolytic SLO that resulted in rapid development of sepsis. By contrast, the reduced concentration and lower haemolytic activity of emm type 1.0 SLO led to translocation of bacteria from blood to joints. Importantly, sepsis associated strains that were attenuated by deletion or inhibition of SLO, then also translocated to the joint, confirming the key role of SLO in determining infection niche. Our findings demonstrate that SLO is key to in vivo phenotype and disease outcome. Careful consideration should be given to novel therapy or vaccination strategies that target SLO. Whilst neutralising SLO activity may reduce severe invasive disease, it has the potential to promote chronic inflammatory conditions such as septic arthritis.


Author(s):  
Asmita Yadav ◽  
Damini Pandey ◽  
Ghulam Md Ashraf ◽  
Rachana

: Peptides are small molecules composed of amino acids linked together by peptide bonds. The targeted action of these peptides along with their magnificent ability to reach locations in body that are complicated to access, is being considered of tremendous potential in disease modifying therapies. Synthetic as well as natural peptides like Carnosine are currently under research for treatment of neurodegenerative disorders (NDDs). Peptide based vaccines are currently under immense research for diseases like dementia. Toxicity of peptide-based drugs tfigureowards eukaryotic cells due to their increased haemolytic activity is of major concern and this is being tackled by introducing modifications into the peptide structure. Some crucial peptide inhibitors currently in use for neurodegenerative disorders include Aβ (16-20) KLVFF for Alzheimer’s disease, NAPVSIPQ (NAP) for Parkinson’s disease, towards eukaryotic cells Vasoactive Intestinal Peptides (VIP) for Huntington’s disease, Polyglutamine Binding Peptide-1(QBP1) for Dentatorubral-paiidoluysial atrophy (DRPLA). Certain peptides are involved in inhibition of mitochondrial permeability transition (MPT) that plays a prominent part in the materialization of neurodegenerative diseases, one such example of peptides being Ba-V which is obtained from Bothrops atrox snake venom. New therapeutic peptides are being identified using bioinformatics tools like high throughput screening (HTS). These tools are being used to explore the selectivity, stability, extent of immune response and toxic side effects of peptides. Apart from neurodegenerative diseases, the potential of bioactive peptides is also being tested against cancer, diabetes and microbes. This review focuses on the recent advances in peptide therapeutics and novel peptides discovered for treatment of the NDs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beata Jasiewicz ◽  
Weronika Kozanecka-Okupnik ◽  
Michał Przygodzki ◽  
Beata Warżajtis ◽  
Urszula Rychlewska ◽  
...  

AbstractA series of fifteen indole derivatives substituted at the C-3 position were synthesized and characterized. The antioxidant activity of all derivatives was investigated by three in vitro antioxidant assays, and the derivative with pyrrolidinedithiocarbamate moiety was the most active as a radical scavenger and Fe3+-Fe2+ reducer. It can be stated that possible hydrogen and electron transfer mechanism is suggested for the quenching of the free radical. Moreover, the indolyl radical stabilization and the presence of unsubstituted indole nitrogen atom are mandatory for the observed antioxidant activity, which strongly depends on the type of the substituent directly connected to the methylene group at the C-3 position. Human red blood cells (RBC) have been used as a cell model to study derivatives interaction with the cell membrane. Haemolytic activity and RBC shape transformation were observed for certain derivatives in a concentration-dependent manner. However, most of the derivatives at sublytic concentration showed high cytoprotective activity against oxidative haemolysis induced by 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The cytoprotective properties of derivatives can be explained mostly due to their interactions with the RBC membrane components. Taking together, theoretical estimations and experimental data confirm the beneficial interactions between the selected C-3 substituted indole derivatives and the RBC membrane under oxidative stress conditions. These results encourage us to further structural optimization of C-3 substituted indole derivatives as potent antioxidant compounds.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1427
Author(s):  
Shagufta Kamal ◽  
Ismat Bibi ◽  
Kanwal Rehman ◽  
Ameer Fawad Zahoor ◽  
Amna Kamal ◽  
...  

The therapeutic potential of whitish glaucous sub-shrub Haloxylon griffithii (H. griffithii), abundantly present in southern regions of South Asia, has been neglected. The current study aimed to assess the phytochemicals and pharmacological potential of native and gemm forms of H. griffithii. Results of antimicrobial activity revealed that all tested bacteria were susceptible at concentrations ≤50 µg/mL, while tested fungal species were susceptible at ≤25 µg/mL. The values of minimum bactericidal concentrations (MBCs) ranged between 10.75 ± 0.20 to 44.25 ± 0.42 µg/mL, 8.25 ± 0.02 to 28.20 ± 0.80 µg/mL. The value of minimum inhibitory concentration (MIC) of all microbial species was ≤100 µg/mL and the antibiotic mechanism showed that both extracts were highly bactericidal and fungicidal. Results of average log reduction of viable cell count in time kill assay indicated that Pseudomonas aeruginosa (P. aeruginosa) NCTC 1662, Candida albicans (C. albicans) IBL-01, Candidakrusei (C. krusei) ATCC 6258, and Aspergillus flavus (A. flavus) QC 6158 were the most susceptible microbial species. High performance liquid chromatography (HPLC)-based quantification confirmed the presence of gallic acid p.coumeric acid catechin, vanillin, ellagic acid, and salicylic acid, while in native extract only gallic acid. Native and gemm extracts exhibited excellent radical scavenging potential measured by 1,1-diphenyl-2-picryl-hydrazyl radical scavenging assay. Significant thrombolytic activity was found in both extracts with negligible haemolytic activity. Highest percent (%) clot lysis was observed with gemm extracts (87.9 ± 0.85% clot lysis). In summary, we infer that valuable evidence congregated can be exploited for better understanding of gemm H. griffithii’s health benefits, further, to increase its utility with enriching dietary sources of health-promoting compounds.


Sign in / Sign up

Export Citation Format

Share Document