scholarly journals “Dehalococcoides” sp. Strain CBDB1 Extensively Dechlorinates the Commercial Polychlorinated Biphenyl Mixture Aroclor 1260

2009 ◽  
Vol 75 (13) ◽  
pp. 4516-4524 ◽  
Author(s):  
Lorenz Adrian ◽  
Vlasta Dudková ◽  
Katařina Demnerová ◽  
Donna L. Bedard

ABSTRACT “Dehalococcoides” sp. strain CBDB1 in pure culture dechlorinates a wide range of PCB congeners with three to eight chlorine substituents. Congener-specific high-resolution gas chromatography revealed that CBDB1 extensively dechlorinated both Aroclor 1248 and Aroclor 1260 after four months of incubation. For example, 16 congeners comprising 67.3% of the total PCBs in Aroclor 1260 were decreased by 64%. We confirmed the dechlorination of 43 different PCB congeners. The most prominent dechlorination products were 2,3′,5-chlorinated biphenyl (25-3-CB) and 24-3-CB from Aroclor 1248 and 235-25-CB, 25-25-CB, 24-25-CB, and 235-236-CB from Aroclor 1260. Strain CBDB1 removed flanked para chlorines from 3,4-, 2,4,5-, and 3,4,5-chlorophenyl rings, primarily para chlorines from 2,3,4,5-chlorophenyl rings, primarily meta chlorines from 2,3,4- and 2,3,4,6-chlorophenyl rings, and either meta or para chlorines from 2,3,4,5,6-chlorophenyl rings. The site of attack on the 2,3,4-chorophenyl ring was heavily influenced by the chlorine configuration on the opposite ring. This dechlorination pattern matches PCB Process H dechlorination, which was previously observed in situ both in the Acushnet Estuary (New Bedford, MA) and in parts of the Hudson River (New York). Accordingly, we propose that Dehalococcoides bacteria similar to CBDB1 are potential agents of Process H PCB dechlorination in the environment. This is the first time that a complex naturally occurring PCB dechlorination pattern has been reproduced in the laboratory using a single bacterial strain.

2019 ◽  
Vol 68 (2) ◽  
pp. 211-216
Author(s):  
MUHAMMAD ANEES ◽  
MUHAMMAD ABID ◽  
SOBIA CHOHAN ◽  
MUHAMMAD JAMIL ◽  
NADEEM AHMED ◽  
...  

Rhizoctonia solani is a soil-borne fungus causing a wide range of plants diseases. Trichoderma gamsii strain T30 has previously been reported as antagonistic against R. solani. Although there are a few studies about the influence of Trichoderma strains on the R. solani densityin a pathosystem in the presence of plant hosts, this report for the first time comprehensively describes in situ effects of a T. gamsii strain on the population density of R. solani in the soil microcosmic conditions. The population dynamics of R. solani were followed in the autoclaved and non-autoclaved soils in artificially prepared microcosms up to day 25 after co-inoculation with T. gamsii in the variable ratios (R1/T1; R1/T0.1; R1/T0.01 of R. solani/T. gamsii). The population density of R. solani was evaluated by qPCR. In the autoclaved soil, target DNA copies of R. solani increased in the control samples from 1 × 105 to 6.5 × 106. At R1/T0.01, the number of target DNA copies were not significantly changed until day 11; however, it decreased by around five times at day 25. At R1/T0.1 and R1/T1, the number of DNA copies was reduced to 2.1 × 106 and 7.6 × 105 at day 11, respectively and the reduction was as much as 17 times at day 25. In the non-autoclaved soil, the number of the fungal cells decreased at day 25 whether inoculated or not with Trichoderma indicating a general suppression by the soil microbiome. In brief, T. gamsii significantly inhibited the growth of R. solani in the soil in situ and there was a general suppressive effect of the natural microbiome.


October ◽  
2021 ◽  
pp. 85-110
Author(s):  
Emily Apter

Abstract Aliza Shvarts first came to widespread attention when her Untitled [Senior Thesis] (2008), consisting of a yearlong performance of self-induced miscarriages, was declared a “fiction” by Yale University and censored from public exhibition. That controversial work was on view for the first time in New York as part of her 2020 exhibition Purported at Art in General. It frames the areas of inquiry she has continued to explore: how the body means and matters and how the subject consents and dissents. In this in-depth conversation, Emily Apter and Aliza Shvarts discuss the exhibition and a wide range of topics relevant to contemporary feminist practice and thought: the genealogy of citation; the uses of theory; speech action; rape kits; nonconsensual collaboration; queer kinship; and memes.


Author(s):  
David Ehrenfeld

When my wife Joan and I were newly married, we lived in a north Jersey suburb not far from the New York state line. Every weekday morning we drove down the Palisades Interstate Parkway to the George Washington Bridge and crossed the Hudson River to Manhattan, where I taught and Joan was a graduate student. The parkway runs along the Palisades, a magnificent, igneous bluff that flanks the west bank of the Hudson and faces, on the far shore, Yonkers, the Riverdale section of the Bronx, and Manhattan. Wooded parkland extends on both sides of the road for its entire length until just before the approach to the bridge, where many lanes of superhighway converge on the toll booths. We loved the woods along the parkway—they calmed us before our immersion in the chaotic city, and soothed us when we left it at the end of the day. That was before we went on our honeymoon, a three-week hike on the Appalachian Trail (interspersed with some hitchhiking on country roads), from Springer Mountain, Georgia, to the border of the Great Smokies in North Carolina. The forest we walked through was a mixture of tall pines and an incredible variety of native hardwoods—an experience of natural diversity that was overwhelming. Nearly every tree we saw was new to us, yet we could feel the pattern and cohesiveness of the forest as a whole. Rhododendrons formed a closed canopy over our heads, fragmenting the June sunshine into a softly shifting mosaic of dap-pled patches. We stepped on a carpet of rhododendron petals. The trip was over all too quickly. The plane carrying us back de-scended through a dense inversion layer of black smog before touching down on the runway at Newark. Home. We were depressed and silent. The ride from Newark Airport to our house took us on the Palisades Parkway. For the first time, we became aware that the woods along the park way were dominated by thin, ungainly Ailanthus, with their coarse(and, we knew, rank-smelling) foliage, and by other weedy species such as the lanky Paulownia. Suddenly, these exotic species seemed very much out of place.


2021 ◽  
Author(s):  
Elena Provornikova ◽  
Pontus C. Brandt ◽  
Ralph L. McNutt, Jr. ◽  
Robert DeMajistre ◽  
Edmond C. Roelof ◽  
...  

<p>The Interstellar Probe is a space mission to discover physical interactions shaping globally the boundary of our Sun`s heliosphere and its dynamics and for the first time directly sample the properties of the local interstellar medium (LISM). Interstellar Probe will go through the boundary of the heliosphere to the LISM enabling for the first time to explore the boundary with a dedicated instrumentation, to take the image of the global heliosphere by looking back and explore in-situ the unknown LISM. The pragmatic concept study of such mission with a lifetime 50 years that can be implemented by 2030 was funded by NASA and has been led by the Johns Hopkins University Applied Physics Laboratory (APL). The study brought together a diverse community of more than 400 scientists and engineers spanning a wide range of science disciplines across the world.</p><p>Compelling science questions for the Interstellar Probe mission have been with us for many decades. Recent discoveries from a number of space missions exploring the heliosphere raised new questions strengthening the science case. The very shape of the heliosphere, a manifestation of complex global interactions between the solar wind and the LISM, remains the biggest mystery. Interpretations of imaging the heliosphere in energetic neutral atoms (ENAs) in different energy ranges on IBEX and Cassini/INCA from inside show contradictory pictures. Global physics-based models also do not agree on the global shape. Interstellar Probe on outbound trajectory will image the heliosphere from outside for the first time and will provide a unique determination of the global shape.</p><p>The LISM is a completely new area for exploration and discovery. We have a crude understanding of the LISM inferred from in-situ measurements inside the heliosphere of interstellar helium, pick-up-ions, ENAs, remote observations of solar backscattered Lyman-alpha emission and absorption line spectroscopy in the lines of sight of stars. We have no in-situ measurements of most LISM properties, e.g. ionization, plasma and neutral gas, magnetic field, composition, dust, and scales of possible inhomogeneities. Voyagers with limited capabilities have explored 30 AU beyond the heliosphere which appeared to be a region of significant heliospheric influence. The LISM properties are among the key unknowns to understand the Sun`s galactic neighborhood and how it shapes our heliosphere. Interstellar Probe will be the first NASA mission to discover the very nature of the LISM and shed light on whether the Sun enters a new region in the LISM in the near future.</p><p>In this presentation we give an overview of heliophysics science for the Interstellar Probe mission focusing on the critical science questions of the three objectives for the mission. We will discuss in more details a need for direct measurements in the LISM uniquely enabled by the Interstellar Probe.</p>


2021 ◽  
Author(s):  
Jian-Qiang Chen ◽  
Xiaodong Tu ◽  
Qi Tang ◽  
Ke Li ◽  
Liang Xu ◽  
...  

Abstract Aliphatic esters are essential constituents of biologically active compounds and versatile chemical intermediates for the synthesis of drugs. However, their preparation from readily available olefins remains challenging. In this report, a new strategy to access aliphatic esters from olefins through a unique photocatalyzed alkoxycarbonylation reaction is described. Alkyloxalyl chlorides, generated in situ from the corresponding alcohols and oxalyl chloride, are engaged for the first time as alkoxycarbonyl radical fragments under photoredox catalysis. This transformation tolerates a broad scope of electron-rich and electron-deficient olefins and provides the corresponding β-chloro esters in good yields. Additionally, a formal β-selective alkene alkoxycarbonylation is developed. And, a variety of oxindole-3-acetates and furoindolines are prepared in good to excellent yields. A more concise formal synthesis of (±)-physovenine is accomplished as well. With these strategies, a wide range of natural-product-derived olefins and alkyloxalyl chlorides are also successfully employed.


Sign in / Sign up

Export Citation Format

Share Document