Unique heliophysics science opportunities along the Interstellar Probe journey up to 1000 AU from the Sun

Author(s):  
Elena Provornikova ◽  
Pontus C. Brandt ◽  
Ralph L. McNutt, Jr. ◽  
Robert DeMajistre ◽  
Edmond C. Roelof ◽  
...  

<p>The Interstellar Probe is a space mission to discover physical interactions shaping globally the boundary of our Sun`s heliosphere and its dynamics and for the first time directly sample the properties of the local interstellar medium (LISM). Interstellar Probe will go through the boundary of the heliosphere to the LISM enabling for the first time to explore the boundary with a dedicated instrumentation, to take the image of the global heliosphere by looking back and explore in-situ the unknown LISM. The pragmatic concept study of such mission with a lifetime 50 years that can be implemented by 2030 was funded by NASA and has been led by the Johns Hopkins University Applied Physics Laboratory (APL). The study brought together a diverse community of more than 400 scientists and engineers spanning a wide range of science disciplines across the world.</p><p>Compelling science questions for the Interstellar Probe mission have been with us for many decades. Recent discoveries from a number of space missions exploring the heliosphere raised new questions strengthening the science case. The very shape of the heliosphere, a manifestation of complex global interactions between the solar wind and the LISM, remains the biggest mystery. Interpretations of imaging the heliosphere in energetic neutral atoms (ENAs) in different energy ranges on IBEX and Cassini/INCA from inside show contradictory pictures. Global physics-based models also do not agree on the global shape. Interstellar Probe on outbound trajectory will image the heliosphere from outside for the first time and will provide a unique determination of the global shape.</p><p>The LISM is a completely new area for exploration and discovery. We have a crude understanding of the LISM inferred from in-situ measurements inside the heliosphere of interstellar helium, pick-up-ions, ENAs, remote observations of solar backscattered Lyman-alpha emission and absorption line spectroscopy in the lines of sight of stars. We have no in-situ measurements of most LISM properties, e.g. ionization, plasma and neutral gas, magnetic field, composition, dust, and scales of possible inhomogeneities. Voyagers with limited capabilities have explored 30 AU beyond the heliosphere which appeared to be a region of significant heliospheric influence. The LISM properties are among the key unknowns to understand the Sun`s galactic neighborhood and how it shapes our heliosphere. Interstellar Probe will be the first NASA mission to discover the very nature of the LISM and shed light on whether the Sun enters a new region in the LISM in the near future.</p><p>In this presentation we give an overview of heliophysics science for the Interstellar Probe mission focusing on the critical science questions of the three objectives for the mission. We will discuss in more details a need for direct measurements in the LISM uniquely enabled by the Interstellar Probe.</p>

2020 ◽  
Author(s):  
Pontus Brandt ◽  
Kathleen Mandt ◽  
Elena Provoronikova ◽  
Casey Lisse ◽  
Kirby Runyon ◽  
...  

<p>An Interstellar Probe beyond our heliosphere in to the largely unexplored interstellar medium (ISM) would be the furthest and boldest step in robotic space exploration ever taken. A dedicated payload of in-situ and remote sensing instruments would uncover the new regime of physics at work in the heliospheric boundary region and offer the first external view of the global heliosphere that is currently missing in the family portrait of all other types of astrospheres observed. Beyond about 400 AU the Probe would reach the ISM and for the first time begin its sampling of the properties of the local interstellar cloud (LIC) that our Sun and neighboring star systems are immersed in.</p><p>An Interstellar Probe has been discussed since around 1960 in several NASA and international studies. The compelling science objectives have remained almost unchanged and are focused on understanding the plasma physics in the interaction region between the heliosphere and the ISM. Their importance have been amplified by the recent unexpected findings by the Voyager 1 and 2 spacecraft that are nearing their end of life at less than 150 AU from the Sun. Remote observations in Energetic Neutral Atoms (ENAs) by the NASA IBEX and Cassini missions have made the remarkable discoveries of ENA emission morphologies that have come as a complete surprise and still lack a satisfactory explanation. Hubble Space Telescope observations have now also made it clearer that the Sun is about to exit the LIC and perhaps already has, which is a unique event of astronomical scales that an Interstellar Probe could explore in-situ for the first time. In addition to these top-priority objectives, contributions of unprecedented science value to planetary sciences and astrophysics are possible including flybys of at least one Kuiper Belt Object, in-situ and remote observations of the dust debris disk, and the extra-galactic background light.</p><p>Here we review the outstanding questions and current state of understanding of the global heliosphere, the ISM and what planetary and astrophysics augmentations can offer. We summarize the compelling science case for an Interstellar Probe, including a range of possible science payloads and the associated operation scenarios. The results stem from the study of a Pragmatic Interstellar Probe currently underway, funded by NASA, and led by The Johns Hopkins University Applied Physics Laboratory with active participation from a large, international team of scientists and engineers. The study focuses on finding realistic mission architectures among a trade space of propulsion options, trajectories, risks and reliability challenges. The study considers operation out to 1000 AU, a survival probability of 85% over 50 years and electrical power of no less than 400 W at the beginning of mission. Over twice the speed of Voyager 1 (the fastest spacecraft currently) has already been achieved in the design using conventional propulsion, with a direct inject to Jupiter followed by a Jupiter Gravity Assist. In order to provide input requirements to the mission study, several possible payloads with different mass allocations and associated mission requirements, trade-offs and risks have been identified.</p>


2010 ◽  
Vol 10 (15) ◽  
pp. 7241-7252 ◽  
Author(s):  
A.-P. Hyvärinen ◽  
H. Lihavainen ◽  
M. Komppula ◽  
T. S. Panwar ◽  
V. P. Sharma ◽  
...  

Abstract. The Finnish Meteorological Institute (FMI), together with The Energy and Resources Institute of India (TERI), contributed to the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions, EUCAARI, by conducting aerosol measurements in Gual Pahari, India, from December 2007 to January 2010. This paper describes the station setup in detail for the first time and provides results from the aerosol in-situ measurements, which include PM and BCe masses, aerosol size distribution from 4 nm to 10 μm, and the scattering and absorption coefficients. The seasonal variation of the aerosol characteristics was very distinct in Gual Pahari. The highest concentrations were observed during the winter and the lowest during the rainy season. The average PM10 concentration (at STP conditions) was 216 μgm−3 and the average PM2.5 concentration was 126 μgm−3. A high percentage (4–9%) of the PM10 mass consisted of BCe which indicates anthropogenic influence. The percentage of BCe was higher during the winter; and according to the diurnal pattern of the BCe fraction, the peak occurred during active traffic hours. Another important source of aerosol particles in the area was new particle formation. The nucleated particles grew rapidly reaching the Aitken and accumulation mode size, thus contributing considerably to the aerosol load. The rainy season decreased the average fraction of particle mass in the PM2.5 size range, i.e. of secondary origin. The other mechanism decreasing the surface concentrations was based on convective mixing and boundary layer evolution. This diluted the aerosol when sun radiation and the temperature was high, i.e. especially during the pre-monsoon day time. The lighter and smaller particles were more effectively diluted.


2020 ◽  
Vol 642 ◽  
pp. A3 ◽  
Author(s):  
I. Zouganelis ◽  
A. De Groof ◽  
A. P. Walsh ◽  
D. R. Williams ◽  
D. Müller ◽  
...  

Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission’s science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit’s science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter’s SAP through a series of examples and the strategy being followed.


2019 ◽  
Vol 68 (2) ◽  
pp. 211-216
Author(s):  
MUHAMMAD ANEES ◽  
MUHAMMAD ABID ◽  
SOBIA CHOHAN ◽  
MUHAMMAD JAMIL ◽  
NADEEM AHMED ◽  
...  

Rhizoctonia solani is a soil-borne fungus causing a wide range of plants diseases. Trichoderma gamsii strain T30 has previously been reported as antagonistic against R. solani. Although there are a few studies about the influence of Trichoderma strains on the R. solani densityin a pathosystem in the presence of plant hosts, this report for the first time comprehensively describes in situ effects of a T. gamsii strain on the population density of R. solani in the soil microcosmic conditions. The population dynamics of R. solani were followed in the autoclaved and non-autoclaved soils in artificially prepared microcosms up to day 25 after co-inoculation with T. gamsii in the variable ratios (R1/T1; R1/T0.1; R1/T0.01 of R. solani/T. gamsii). The population density of R. solani was evaluated by qPCR. In the autoclaved soil, target DNA copies of R. solani increased in the control samples from 1 × 105 to 6.5 × 106. At R1/T0.01, the number of target DNA copies were not significantly changed until day 11; however, it decreased by around five times at day 25. At R1/T0.1 and R1/T1, the number of DNA copies was reduced to 2.1 × 106 and 7.6 × 105 at day 11, respectively and the reduction was as much as 17 times at day 25. In the non-autoclaved soil, the number of the fungal cells decreased at day 25 whether inoculated or not with Trichoderma indicating a general suppression by the soil microbiome. In brief, T. gamsii significantly inhibited the growth of R. solani in the soil in situ and there was a general suppressive effect of the natural microbiome.


2019 ◽  
Author(s):  
Edward H. Bair ◽  
Karl Rittger ◽  
Jawairia A. Ahmad ◽  
Doug Chabot

Abstract. Ice and snowmelt feed the Indus and Amu Darya rivers, yet there are limited in situ measurements of these resources. Previous work in the region has shown promise using snow water equivalent (SWE) reconstruction, which requires no in situ measurements, but validation has been a problem until recently when we were provided with daily manual snow depth measurements from Afghanistan, Tajikistan, and Pakistan by the Aga Khan Agency for Habitat (AKAH). For each station, accumulated precipitation and SWE were derived from snow depth using the SNOWPACK model. High-resolution (500 m) reconstructed SWE estimates from the ParBal model were then compared to the modeled SWE at the stations. The Alpine3D model was then used to create spatial estimates at 25 km to compare with estimates from other snow models. Additionally, the coupled SNOWPACK and Alpine3D system has the advantage of simulating snow profiles, which provide stability information. Following previous work, the median number of critical layers and percentage of facets across all of the pixels containing the AKAH stations was computed. For SWE at the point scale, the reconstructed estimates showed a bias of −42 mm (−19 %) at the peak. For the coarser spatial SWE estimates, the various models showed a wide range, with reconstruction being on the lower end. For stratigraphy, a heavily faceted snowpack is observed in both years, but 2018, a dry year, according to most of the models, showed more critical layers that persisted for a longer period.


2013 ◽  
Vol 718-720 ◽  
pp. 721-724
Author(s):  
Deepal Subasinghe Nalaka ◽  
Mahakumara Prasad ◽  
Thusitha B. Nimalsiri ◽  
Nuwan B. Suriyaarchchi ◽  
Takeshi Iimoto ◽  
...  

For the first time in Sri Lanka, an attempt was made to measure the outdoor radon levels using CR 39 type passive radon detectors. Preliminary results indicate that in Sri Lanka, 220Rn isotope is more abundance than 222Rn isotope. These results were also confirmed by in-situ measurements. Sri Lanka has one of the highest 220Rn values in the region. It was also noted that environmental conditions and other physical factors have a significant effect on the outdoor radon measurements using passive discriminative detectors.


1991 ◽  
Vol 126 ◽  
pp. 29-32
Author(s):  
Bruce T. Tsurutani ◽  
James E. Randolph

AbstractThe NASA Solar Probe mission will be one of the most exciting dust missions ever flown and will lead to a revolutionary advance in our understanding of dust within our solar system. Solar Probe will map the dust environment from the orbit of Jupiter (5 AU), to within 4 solar radii of the sun’s center. The region between 0.3 AU and 4 Rshas never been visited before, so the 10 days that the spacecraft spends during each (of the two) orbit is purely exploratory in nature. Solar Probe will also reach heliographic latitudes as high as ~ 15 to 28 above (below) the ecliptic on its trajectory inbound (outbound) to (from) the sun. This, in addition to the ESA/NASA Ulysses mission, will help determine the out-of-the-ecliptic dust environment. A post-perihelion burn will reduce the satellite orbital period to 2.5 years about the sun. A possible extended mission would allow data reception for 2 more revolutions, mapping out a complete solar cycle. Because the near-solar dust environment is not well understood (or is controversial at best), and it is very important to have better knowledge of the dust environment to protect Solar Probe from high velocity dust hits, we urgently request the scientific community to obtain further measurements of the near-solar dust properties. One prime opportunity is the July 1991 solar eclipse.


2020 ◽  
Author(s):  
Karine Issautier ◽  
Mingzhe Liu ◽  
Michel Moncuquet ◽  
Nicole Meyer-Vernet ◽  
Milan Maksimovic ◽  
...  

<p>We present in situ properties of electron density and temperature in the inner heliosphere obtained during the three first solar encounters at 35 solar radii of the Parker Solar Probe mission. These preliminary results, recently shown by Moncuquet et al., ApJS, 2020, are obtained from the analysis of the plasma quasi-thermal noise (QTN) spectrum measured by the radio RFS/FIELDS instrument along the trajectories extending between 0.5 and 0.17 UA from the Sun, revealing different states of the emerging solar wind, five months apart. The temperature of the weakly collisional core population varies radially with a power law index of about -0.8, much slower than adiabatic, whereas the temperature of the supra-thermal population exhibits a much flatter radial variation, as expected from its nearly collisionless state. These measured temperatures are close to extrapolations towards the Sun of Helios measurements.</p><p>We also present a statistical study from these in situ electron solar wind parameters, deduced by QTN spectroscopy, and compare the data to other onboard measurements. In addition, we focus on the large-scale solar wind properties. In particular, from the invariance of the energy flux, a direct relation between the solar wind speed and its density can be deduced, as we have already obtained based on Wind continuous in situ measurements (Le Chat et al., Solar Phys., 2012). We study this anti-correlation during the three first solar encounters of PSP.</p>


2020 ◽  
Author(s):  
Carey Lisse ◽  
Michael Zemcov ◽  
Andrew Poppe ◽  
Jamey Szalay ◽  
Bruce Draine ◽  
...  

2018 ◽  
Author(s):  
Bin Cao ◽  
Tingjun Zhang ◽  
Qinghai Wu ◽  
Yu Sheng ◽  
Lin Zhao ◽  
...  

Abstract. Many maps have been produced to estimate permafrost distribution over the Qinghai-Tibet Plateau, however, the evaluation and comparisons of them are poorly understood due to limited evidence. Using a large number data from various sources, we present the inventory of permafrost presence/absence with 1475 sites/plots over the QTP. Based on the in-situ measurements, our evaluation results showed a wide range of map performance with the overall accuracy of about 59–82 %, and the estimated permafrost region (1.42–1.84 × 106 km2) and area (0.76–1.25 × 106 km2) are extremely large. The low agreement in areas near permafrost boundary and fragile landscapes require improved method considering more controlling factors at both medium-large and local scales.


Sign in / Sign up

Export Citation Format

Share Document