scholarly journals Novel Method for Selection of Antimicrobial Peptides from a Phage Display Library by Use of Bacterial Magnetic Particles

2008 ◽  
Vol 74 (24) ◽  
pp. 7600-7606 ◽  
Author(s):  
Tsuyoshi Tanaka ◽  
Yoriko Kokuryu ◽  
Tadashi Matsunaga

ABSTRACT Antimicrobial peptides were isolated from a phage display peptide library using bacterial magnetic particles (BacMPs) as a solid support. The BacMPs obtained from “Magnetospirillum magneticum” strain AMB-1 consist of pure magnetite (50 to 100 nm in size) and are covered with a lipid bilayer membrane derived from the invagination of the inner membrane. BacMPs are easily purified from a culture of magnetotactic bacteria by magnetic separation. Approximately 4 × 1010 PFU of the library phage (complexity, 2.7 × 109) was reacted with BacMPs. The elution of bound phages from BacMPs was performed by disrupting its membrane with phospholipase D treatment. Six candidate peptides, which were highly cationic and could bind onto the BacMP membrane, were obtained. They exhibited antimicrobial activity against Bacillus subtilis but not against Escherichia coli and Saccharomyces cerevisiae. The amino acid substitution of the selected peptide, KPQQHNRPLRHK (peptide 6-7), to enhance the hydrophobicity resulted in obvious antimicrobial activity against all test microorganisms. The present study shows for the first time that a magnetic selection of antimicrobial peptides from the phage display peptide library was successfully achieved by targeting the actual bacterial inner membrane. This BacMP-based method could be a promising approach for a high-throughput screening of antimicrobial peptides targeting a wide range of species.

2006 ◽  
Vol 70 (9) ◽  
pp. 2035-2041 ◽  
Author(s):  
Fang-Yu WANG ◽  
Tian-Yuan ZHANG ◽  
Jin-Xian LUO ◽  
Guo-An HE ◽  
Qu-Liang GU ◽  
...  

2012 ◽  
Vol 66 (4) ◽  
pp. 379-384 ◽  
Author(s):  
Qingming Zhang ◽  
Yuping Wang ◽  
Qun Ji ◽  
Jingmin Gu ◽  
Shanshan Liu ◽  
...  

2013 ◽  
Vol 174 (1-2) ◽  
pp. 47-51 ◽  
Author(s):  
Limin Yang ◽  
Junyu Cen ◽  
Qinghua Xue ◽  
Jing Li ◽  
Yuhai Bi ◽  
...  

Peptides ◽  
2011 ◽  
Vol 32 (6) ◽  
pp. 1097-1102 ◽  
Author(s):  
Arulkumaran Shanmugam ◽  
Robert Suriano ◽  
Devyani Chaudhuri ◽  
Shilpi Rajoria ◽  
Andrea George ◽  
...  

2004 ◽  
Vol 70 (5) ◽  
pp. 2880-2885 ◽  
Author(s):  
Tomoko Yoshino ◽  
Masayoshi Takahashi ◽  
Haruko Takeyama ◽  
Yoshiko Okamura ◽  
Fukuichi Kato ◽  
...  

ABSTRACT G protein-coupled receptors (GPCRs) play a central role in a wide range of biological processes and are prime targets for drug discovery. GPCRs have large hydrophobic domains, and therefore purification of GPCRs from cells is frequently time-consuming and typically results in loss of native conformation. In this work, GPCRs have been successfully assembled into the lipid membrane of nanosized bacterial magnetic particles (BMPs) produced by the magnetic bacterium Magnetospirillum magneticum AMB-1. A BMP-specific protein, Mms16, was used as an anchor molecule, and localization of heterologous Mms16 on BMPs was confirmed by luciferase fusion studies. Stable luminescence was obtained from BMPs bearing Mms16 fused with luciferase at the C-terminal region. D1 dopamine receptor (D1R), a GPCR, was also efficiently assembled onto BMPs by using Mms16 as an anchor molecule. D1R-BMP complexes were simply extracted by magnetic separation from ruptured AMB-1 transformants. After washing, the complexes were ready to use for analysis. This system conveniently refines the native conformation of GPCRs without the need for detergent solubilization, purification, and reconstitution after cell disruption.


Peptides ◽  
2002 ◽  
Vol 23 (3) ◽  
pp. 573-580 ◽  
Author(s):  
Natarajan Venkatesh ◽  
Yehudith Zaltsman ◽  
Dalia Somjen ◽  
Batya Gayer ◽  
Ettickan Boopathi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document