scholarly journals Screening and selection of peptides specific for esophageal cancer cells from a phage display peptide library

2014 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhe-Feng Zhang ◽  
Xue Shan ◽  
Yong-Xin Wang ◽  
Wei Wang ◽  
Shi-Yun Feng ◽  
...  
2008 ◽  
Vol 74 (24) ◽  
pp. 7600-7606 ◽  
Author(s):  
Tsuyoshi Tanaka ◽  
Yoriko Kokuryu ◽  
Tadashi Matsunaga

ABSTRACT Antimicrobial peptides were isolated from a phage display peptide library using bacterial magnetic particles (BacMPs) as a solid support. The BacMPs obtained from “Magnetospirillum magneticum” strain AMB-1 consist of pure magnetite (50 to 100 nm in size) and are covered with a lipid bilayer membrane derived from the invagination of the inner membrane. BacMPs are easily purified from a culture of magnetotactic bacteria by magnetic separation. Approximately 4 × 1010 PFU of the library phage (complexity, 2.7 × 109) was reacted with BacMPs. The elution of bound phages from BacMPs was performed by disrupting its membrane with phospholipase D treatment. Six candidate peptides, which were highly cationic and could bind onto the BacMP membrane, were obtained. They exhibited antimicrobial activity against Bacillus subtilis but not against Escherichia coli and Saccharomyces cerevisiae. The amino acid substitution of the selected peptide, KPQQHNRPLRHK (peptide 6-7), to enhance the hydrophobicity resulted in obvious antimicrobial activity against all test microorganisms. The present study shows for the first time that a magnetic selection of antimicrobial peptides from the phage display peptide library was successfully achieved by targeting the actual bacterial inner membrane. This BacMP-based method could be a promising approach for a high-throughput screening of antimicrobial peptides targeting a wide range of species.


2006 ◽  
Vol 70 (9) ◽  
pp. 2035-2041 ◽  
Author(s):  
Fang-Yu WANG ◽  
Tian-Yuan ZHANG ◽  
Jin-Xian LUO ◽  
Guo-An HE ◽  
Qu-Liang GU ◽  
...  

2012 ◽  
Vol 66 (4) ◽  
pp. 379-384 ◽  
Author(s):  
Qingming Zhang ◽  
Yuping Wang ◽  
Qun Ji ◽  
Jingmin Gu ◽  
Shanshan Liu ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Chuangui Chen ◽  
Zhao Ma ◽  
Hongjing Jiang

Epithelial-mesenchymal transition (EMT) is a key step in tumor invasion and distant metastasis. Abundant evidence has documented that exosomes can mediate EMT of tumor cells and endow them with the ability of invasion and migration. However, there are few studies focusing on whether EMT can reverse the secretion of exosomes. In this study, 2 esophageal cancer cells (FLO-1 and SK-GT-4) were selected to compare the migration ability and EMT activation, and to further analyze the secretion ability of exosomes of the 2 cell lines. According to the results, inhibited activation of EMT in FLO-1 cells with relatively high migration ability could effectively reduce the secretion of exosomes. Besides, in SK-GT-4 cells, EMT activation induced by TGF-β could promote the secretion of exosomes. FLO-1 cell derived exosomes exhibited a paracrine effect of promoting the migration of SK-GT-4 cells, and the use of EMT inhibitors could weaken this ability. Furthermore, inhibition of EMT could change the relative content of some miRNAs in exosomes, with a particularly significant downregulation in the expression of miR-196-5p, miR-21-5p and miR-194-5p. Significantly, artificial transfection of the 3 miRNAs into exosomes by electroporation resulted in the recovery of migration-promoting effect of exosomes. Subsequent experiments further revealed that the effect of EMT on these miRNAs could be explained by the intracellular transcription level or the specific sorting mechanism of exosomes. To sum up, our study undoubtedly reveals that EMT has a regulatory effect on exosomes in the quantity and contents in esophageal cancer cells. Significantly, findings in our study provide experimental evidence for the interaction of EMT with the secretion and sorting pathway of exosomes, and also give a new direction for the further study of tumor metastasis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1065
Author(s):  
Joseph-Hang Leung ◽  
Hong-Thai Nguyen ◽  
Shih-Wei Feng ◽  
Sofya B. Artemkina ◽  
Vladimir E. Fedorov ◽  
...  

P-type and N-type photoelectrochemical (PEC) biosensors were established in the laboratory to discuss the correlation between characteristic substances and photoactive material properties through the photogenerated charge carrier transport mechanism. Four types of human esophageal cancer cells (ECCs) were analyzed without requiring additional bias voltage. Photoelectrical characteristics were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–vis reflectance spectroscopy, and photocurrent response analyses. Results showed that smaller photocurrent was measured in cases with advanced cancer stages. Glutathione (L-glutathione reduced, GSH) and Glutathione disulfide (GSSG) in cancer cells carry out redox reactions during carrier separation, which changes the photocurrent. The sensor can identify ECC stages with a certain level of photoelectrochemical response. The detection error can be optimized by adjusting the number of cells, and the detection time of about 5 min allowed repeated measurement.


2017 ◽  
Vol 10 (5) ◽  
pp. 726-733 ◽  
Author(s):  
Rossana C. Soletti ◽  
Deborah Biasoli ◽  
Nathassya A.L.V. Rodrigues ◽  
João M.A. Delou ◽  
Renata Maciel ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Gizem Calibasi Kocal ◽  
Sinan Güven ◽  
Kira Foygel ◽  
Aaron Goldman ◽  
Pu Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document