scholarly journals Aromatic Hydroxylation of Indan by o-Xylene-Degrading Rhodococcus sp. Strain DK17

2009 ◽  
Vol 76 (1) ◽  
pp. 375-377 ◽  
Author(s):  
Dockyu Kim ◽  
Choong Hwan Lee ◽  
Jung Nam Choi ◽  
Ki Young Choi ◽  
Gerben J. Zylstra ◽  
...  

ABSTRACT The metabolically versatile Rhodococcus sp. strain DK17 utilizes indan as a growth substrate via the o-xylene pathway. Metabolite and reverse transcription-PCR analyses indicate that o-xylene dioxygenase hydroxylates indan at the 4,5 position of the aromatic moiety to form cis-indan-4,5-dihydrodiol, which is dehydrogenated to 4,5-indandiol by a dehydrogenase. 4,5-Indandiol undergoes ring cleavage by a meta-cleavage dioxygenase.

2011 ◽  
Vol 77 (23) ◽  
pp. 8280-8287 ◽  
Author(s):  
Dockyu Kim ◽  
Miyoun Yoo ◽  
Ki Young Choi ◽  
Beom Sik Kang ◽  
Tai Kyoung Kim ◽  
...  

ABSTRACTThe metabolically versatileRhodococcussp. strain DK17 is able to grow on tetralin and indan but cannot use their respective desaturated counterparts, 1,2-dihydronaphthalene and indene, as sole carbon and energy sources. Metabolite analyses by gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry clearly show that (i) themeta-cleavage dioxygenase mutant strain DK180 accumulates 5,6,7,8-tetrahydro-1,2-naphthalene diol, 1,2-indene diol, and 3,4-dihydro-naphthalene-1,2-diol from tetralin, indene, and 1,2-dihydronaphthalene, respectively, and (ii) when expressed inEscherichia coli, the DK17o-xylene dioxygenase transforms tetralin, indene, and 1,2-dihydronaphthalene into tetralincis-dihydrodiol, indan-1,2-diol, andcis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, respectively. Tetralin, which is activated by aromatic hydroxylation, is degraded successfully via the ring cleavage pathway to support growth of DK17. Indene and 1,2-dihydronaphthalene do not serve as growth substrates because DK17 hydroxylates them on the alicyclic ring and further metabolism results in a dead-end metabolite. This study reveals that aromatic hydroxylation is a prerequisite for proper degradation of bicyclics with aromatic and alicyclic rings by DK17 and confirms the unique ability of the DK17o-xylene dioxygenase to perform distinct regioselective hydroxylations.


2021 ◽  
pp. 104868
Author(s):  
Marielle BEDOTTO ◽  
Pierre-Edouard FOURNIER ◽  
Linda HOUHAMDI ◽  
Philippe COLSON ◽  
Didier RAOULT

2003 ◽  
Vol 69 (11) ◽  
pp. 6541-6549 ◽  
Author(s):  
Gilbert Thierry Lamothe ◽  
Thierry Putallaz ◽  
Han Joosten ◽  
Joey D. Marugg

ABSTRACT A seminested reverse transcription-PCR method coupled to membrane filtration was optimized to investigate the presence of norovirus (NV) RNA sequences in bottled and natural mineral waters. The recovery of viral particles by filtration varied between 28 and 45%, while the limit of detection of the overall method ranged from 6 to 95 viral particles. The assay was broadly reactive, as shown by the successful detection of 27 different viral strains representing 12 common genotypes of NVs. A total of 718 bottled and natural mineral water samples were investigated, including 640 samples of finished, spring, and line products (mostly 1 to 1.5 liters), collected from 36 different water brands of various types and from diverse geographic origins over a 2-year period. In addition, 78 samples of larger volume (10 and 400 to 500 liters) and environmental swabs were investigated. From the 1,436 analyses that were performed for the detection of NVs belonging to genogroups I and II, 34 samples (2.44%) were presumptively positive by seminested RT-PCR. However, confirmation by DNA sequence analysis revealed that all presumptive positive results were either due to nonspecific amplification or to cross-contamination. In conclusion, these results do not provide any evidence for the presence of NV genome sequences in bottled waters.


1996 ◽  
Vol 47 (1-2) ◽  
pp. 115
Author(s):  
AJ Knipper ◽  
J Enczmann ◽  
P Hakenberg ◽  
G Kögler ◽  
P Wernet

2005 ◽  
Vol 49 (1) ◽  
pp. 421-424 ◽  
Author(s):  
S. Raherison ◽  
P. Gonzalez ◽  
H. Renaudin ◽  
A. Charron ◽  
C. Bébéar ◽  
...  

ABSTRACT Two genes, md1 and md2, coding for multidrug resistance ATP-binding cassette transporters were identified in Mycoplasma hominis PG21. Expression of these two genes, quantified by quantitative competitive reverse transcription-PCR, was significantly increased in ethidium bromide-resistant strains of M. hominis compared to that in M. hominis PG21.


Sign in / Sign up

Export Citation Format

Share Document