Evaluation of Rapid Antigen Test for the Detection of Norovirus Infection: Comparison with ELISA and Real Time Quantitative Reverse Transcription PCR Assays

2011 ◽  
Vol 1 (4) ◽  
pp. 184 ◽  
Author(s):  
Hyun Soo Kim ◽  
Kyung Hee Kim ◽  
Hye Won Kwon ◽  
Tae Yeong Kang ◽  
Mina Hur ◽  
...  
2006 ◽  
Vol 73 (1) ◽  
pp. 15.8.1-15.8.28 ◽  
Author(s):  
Angie L. Bookout ◽  
Carolyn L. Cummins ◽  
David J. Mangelsdorf ◽  
Jean M. Pesola ◽  
Martha F. Kramer

2005 ◽  
Vol 109 (4) ◽  
pp. 365-379 ◽  
Author(s):  
Stephen A. Bustin ◽  
Reinhold Mueller

qRT-PCR (real-time reverse transcription-PCR) has become the benchmark for the detection and quantification of RNA targets and is being utilized increasingly in novel clinical diagnostic assays. Quantitative results obtained by this technology are not only more informative than qualitative data, but simplify assay standardization and quality management. qRT-PCR assays are most established for the detection of viral load and therapy monitoring, and the development of SARS (severe acute respiratory syndrome)-associated coronavirus qRT-PCR assays provide a textbook example of the value of this technology for clinical diagnostics. The widespread use of qRT-PCR assays for diagnosis and the detection of disease-specific prognostic markers in leukaemia patients provide further examples of their usefulness. Their value for the detection of disease-associated mRNA expressed by circulating tumour cells in patients with solid malignancies is far less apparent, and the clinical significance of results obtained from such tests remains unclear. This is because of conceptual reservations as well as technical limitations that can interfere with the diagnostic specificity of qRT-PCR assays. Therefore, although it is evident that qRT-PCR assay has become a useful and important technology in the clinical diagnostic laboratory, it must be used appropriately and it is essential to be aware of its limitations if it is to fulfil its potential.


2009 ◽  
Vol 55 (4) ◽  
pp. 765-773 ◽  
Author(s):  
Pauliina Helo ◽  
Angel M Cronin ◽  
Daniel C Danila ◽  
Sven Wenske ◽  
Rita Gonzalez-Espinoza ◽  
...  

Abstract Background: Reverse transcription-PCR (RT-PCR) assays have been used for analysis of circulating tumor cells (CTCs), but their clinical value has yet to be established. We assessed men with localized prostate cancer or castration-refractory prostate cancer (CRPC) for CTCs via real-time RT-PCR assays for KLK3 [kallikrein-related peptidase 3; i.e., prostate-specific antigen (PSA)] and KLK2 mRNAs. We also assessed the association of CTCs with disease characteristics and survival. Methods: KLK3, KLK2, and PSCA (prostate stem cell antigen) mRNAs were measured by standardized, quantitative real-time RT-PCR assays in blood samples from 180 localized-disease patients, 76 metastatic CRPC patients, and 19 healthy volunteers. CRPC samples were also tested for CTCs by an immunomagnetic separation system (CellSearch™; Veridex) approved for clinical use. Results: All healthy volunteers were negative for KLK mRNAs. Results of tests for KLK3 or KLK2 mRNAs were positive (≥80 mRNAs/mL blood) in 37 patients (49%) with CRPC but in only 15 patients (8%) with localized cancer. RT-PCR and CellSearch CTC results were strongly concordant (80%–85%) and correlated (Kendall τ, 0.60–0.68). Among CRPC patients, KLK mRNAs and CellSearch CTCs were closely associated with clinical evidence of bone metastases and with survival but were only modestly correlated with serum PSA concentrations. PSCA mRNA was detected in only 7 CRPC patients (10%) and was associated with a positive KLK mRNA status. Conclusions: Real-time RT-PCR assays of KLK mRNAs are highly concordant with CellSearch CTC results in patients with CRPC. KLK2/3-expressing CTCs are common in men with CRPC and bone metastases but are rare in patients with metastases diagnosed only in soft tissues and patients with localized cancer.


2002 ◽  
Vol 318 (1-2) ◽  
pp. 33-40 ◽  
Author(s):  
Ye Chuanzhong ◽  
Guan Ming ◽  
Zhang Fanglin ◽  
Chen Haijiao ◽  
Lin Zhen ◽  
...  

2011 ◽  
Vol 74 (5) ◽  
pp. 840-843 ◽  
Author(s):  
AYSUN YILMAZ ◽  
KAMIL BOSTAN ◽  
EDA ALTAN ◽  
KARLO MURATOGLU ◽  
NURI TURAN ◽  
...  

Investigation of norovirus (NoV) contamination of food items is important because many outbreaks occur after consumption of contaminated shellfish, vegetables, fruits, and water. The frequency of NoV contamination in food items has not previously been investigated in Turkey. The aim of this study was to investigate the frequency of human NoV genogroups (G) I and II in ready-to-eat tomatoes, parsley, green onion, lettuce, mixed salads, and cracked wheat balls. RNA was extracted with the RNeasy Mini Kit, and a real-time reverse transcription (RT) PCR assay was performed using primers specific for NoV GI and GII. Among the 525 samples analyzed, NoV GII was detected in 1 green onion sample and 1 tomato sample by both SYBR Green and TaqMan real-time RT-PCR assays; no GI virus was detected. The Enterobactericaeae and Escherichia coli levels in the NoV-positive green onion were 6.56 and 1.28 log CFU/g, and those in the tomato were 5.55 and 1.30 log CFU/g, respectively. No significant difference in the bacterial levels was found between the NoV-positive and NoV-negative samples. This study is the first in which NoV GII was found in ready-to-eat food collected from Istanbul, Turkey; thus, these foods may be considered a risk to human health. Epidemiological studies and measures to prevent NoV infection should be considered.


Sign in / Sign up

Export Citation Format

Share Document