scholarly journals Detection of Low-Copy-Number Genomic DNA Sequences in Individual Bacterial Cells by Using Peptide Nucleic Acid-Assisted Rolling-Circle Amplification and Fluorescence In Situ Hybridization

2007 ◽  
Vol 73 (7) ◽  
pp. 2324-2328 ◽  
Author(s):  
Irina Smolina ◽  
Charles Lee ◽  
Maxim Frank-Kamenetskii

ABSTRACT An approach is proposed for in situ detection of short signature DNA sequences present in single copies per bacterial genome. The site is locally opened by peptide nucleic acids, and a circular oligonucleotide is assembled. The amplicon generated by rolling circle amplification is detected by hybridization with fluorescently labeled decorator probes.

2001 ◽  
Vol 70 (3) ◽  
pp. 281-288 ◽  
Author(s):  
Yi Zhou ◽  
Margaret Calciano ◽  
Stefan Hamann ◽  
J.H. Leamon ◽  
Tod Strugnell ◽  
...  

Cell Cycle ◽  
2005 ◽  
Vol 4 (12) ◽  
pp. 1767-1773 ◽  
Author(s):  
Jia Li ◽  
C.S.H. Young ◽  
Paul M. Lizardia ◽  
David F. Stern

2014 ◽  
Vol 126 (9) ◽  
pp. 2421-2425 ◽  
Author(s):  
Ruijie Deng ◽  
Longhua Tang ◽  
Qianqian Tian ◽  
Ying Wang ◽  
Lei Lin ◽  
...  

2004 ◽  
Vol 186 (19) ◽  
pp. 6626-6633 ◽  
Author(s):  
Laura Gómez-Valero ◽  
Mario Soriano-Navarro ◽  
Vicente Pérez-Brocal ◽  
Abdelaziz Heddi ◽  
Andrés Moya ◽  
...  

ABSTRACT Intracellular symbiosis is very common in the insect world. For the aphid Cinara cedri, we have identified by electron microscopy three symbiotic bacteria that can be characterized by their different sizes, morphologies, and electrodensities. PCR amplification and sequencing of the 16S ribosomal DNA (rDNA) genes showed that, in addition to harboring Buchnera aphidicola, the primary endosymbiont of aphids, C. cedri harbors a secondary symbiont (S symbiont) that was previously found to be associated with aphids (PASS, or R type) and an α-proteobacterium that belongs to the Wolbachia genus. Using in situ hybridization with specific bacterial probes designed for symbiont 16S rDNA sequences, we have shown that Wolbachia was represented by only a few minute bacteria surrounding the S symbionts. Moreover, the observed B. aphidicola and the S symbionts had similar sizes and were housed in separate specific bacterial cells, the bacteriocytes. Interestingly, in contrast to the case for all aphids examined thus far, the S symbionts were shown to occupy a similarly sized or even larger bacteriocyte space than B. aphidicola. These findings, along with the facts that C. cedri harbors the B. aphidicola strain with the smallest bacterial genome and that the S symbionts infect all Cinara spp. analyzed so far, suggest the possibility of bacterial replacement in these species.


Sign in / Sign up

Export Citation Format

Share Document