padlock probes
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noa Wolff ◽  
Michaela Hendling ◽  
Fabian Schroeder ◽  
Silvia Schönthaler ◽  
Andreas F. Geiss ◽  
...  

AbstractAntibiotic resistances progressively cause treatment failures, and their spreading dynamics reached an alarming level. Some strains have already been classified as highly critical, e.g. the ones summarised by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.). To restrain this trend and enable effective medication, as much information as possible must be obtained in the least possible time. Here, we present a DNA microarray-based assay that screens for the most important sepsis-relevant 44 pathogenic species, 360 virulence factors (mediate pathogenicity in otherwise non-pathogenic strains), and 409 antibiotic resistance genes in parallel. The assay was evaluated with 14 multidrug resistant strains, including all ESKAPE pathogens, mainly obtained from clinical isolates. We used a cost-efficient ligation-based detection platform designed to emulate the highly specific multiplex detection of padlock probes. Results could be obtained within one day, requiring approximately 4 h for amplification, application to the microarray, and detection.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1749
Author(s):  
Alejandra Ben Aissa ◽  
Narayanan Madaboosi ◽  
Mats Nilsson ◽  
Maria Isabel Pividori

Isothermal amplification techniques are emerging nowadays for the rapid and accurate detection of pathogenic bacteria in low resource settings, where many infectious diseases are endemic, and the lack of reliable power supply, trained personnel and specialized facilities pose critical barriers for timely diagnosis. This work addresses the detection of E. coli based on DNA isothermal amplification performed on magnetic particles (MPs) followed by electrochemical genosensing on disposable electrodes by square-wave voltammetry. In this approach, the bacterial DNA is preconcentrated using a target-specific magnetic probe and then amplified on the MPs by rolling circle amplification (RCA). Two different electrochemical readout methods for the RCA amplicons are tested. The first one relied on the labelling of the magnetic RCA product with a digoxigenin probe followed by the incubation with antiDIG-HRP antibody as electrochemical reporter. In the second case, the direct detection with an HRP-probe was performed. This latter strategy showed an improved analytical performance, while simultaneously avoiding the use of thermocyclers or bulky bench top equipment.


2020 ◽  
Author(s):  
Hower Lee ◽  
Sergio Marco Salas ◽  
Daniel Gyllborg ◽  
Mats Nilsson

Highly multiplexed spatial mapping of multiple transcripts within tissues allows for investigation of the transcriptomic and cellular diversity of mammalian organs previously unseen. Here we explore the possibilities of a direct RNA (dRNA) detection approach incorporating the use of padlock probes and rolling circle amplification in combination with hybridization-based in situ sequencing (HybISS) chemistry. We benchmark a dRNA targeting kit that circumvents the standard reverse transcription limiting, cDNA-based in situ sequencing (ISS). We found a five-fold increase in transcript detection efficiency when compared to cDNA-based ISS and also validated its multiplexing capability by targeting a curated panel of 50 genes from previous publications on mouse brain sections, leading to additional data interpretation such as de novo cell typing. With this increased efficiency, we maintain specificity, multiplexing capabilities and ease of implementation. Overall, the dRNA chemistry shows significant improvements in target detection efficiency, closing the gap between the gold standard of fluorescent in situ hybridization (FISH) based technologies and opens up possibilities to explore new biological questions previously not possible with cDNA-based ISS, nor with FISH.


PLoS Biology ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. e3000675
Author(s):  
Alexandros Sountoulidis ◽  
Andreas Liontos ◽  
Hong Phuong Nguyen ◽  
Alexandra B. Firsova ◽  
Athanasios Fysikopoulos ◽  
...  

Changes in cell identities and positions underlie tissue development and disease progression. Although single-cell mRNA sequencing (scRNA-Seq) methods rapidly generate extensive lists of cell states, spatially resolved single-cell mapping presents a challenging task. We developed SCRINSHOT (Single-Cell Resolution IN Situ Hybridization On Tissues), a sensitive, multiplex RNA mapping approach. Direct hybridization of padlock probes on mRNA is followed by circularization with SplintR ligase and rolling circle amplification (RCA) of the hybridized padlock probes. Sequential detection of RCA-products using fluorophore-labeled oligonucleotides profiles thousands of cells in tissue sections. We evaluated SCRINSHOT specificity and sensitivity on murine and human organs. SCRINSHOT quantification of marker gene expression shows high correlation with published scRNA-Seq data over a broad range of gene expression levels. We demonstrate the utility of SCRINSHOT by mapping the locations of abundant and rare cell types along the murine airways. The amenability, multiplexity, and quantitative qualities of SCRINSHOT facilitate single-cell mRNA profiling of cell-state alterations in tissues under a variety of native and experimental conditions.


2020 ◽  
Vol 6 (4) ◽  
pp. 290
Author(s):  
Morgana Ferreira Voidaleski ◽  
Renata Rodrigues Gomes ◽  
Conceição de Maria Pedrozo e Silva de Azevedo ◽  
Bruna Jacomel Favoreto de Souza Lima ◽  
Flávia de Fátima Costa ◽  
...  

Chromoblastomycosis is a chronic, cutaneous or subcutaneous mycosis characterized by the presence of muriform cells in host tissue. Implantation disease is caused by melanized fungi related to black yeasts, which, in humid tropical climates, are mainly members of the genus Fonsecaea. In endemic areas of Brazil, F. pedrosoi and F. monophora are the prevalent species. The current hypothesis of infection is traumatic introduction via plant materials, especially by plant thorns. However, isolation studies have demonstrated a low frequency of the agents in environmental substrates. The present study aimed to detect F. pedrosoi and F. monophora in shells of babassu coconuts, soil, plant debris, and thorns from endemic areas of chromoblastomycosis in Maranhão state, northern Brazil, using Rolling Circle Amplification (RCA) with padlock probes as a new environmental screening tool for agents of chromoblastomycosis. In addition to molecular screening, the environmental samples were analyzed by fungal isolation using mineral oil flotation. The limit of detection of the RCA method was 2.88 × 107 copies of DNA per sample for the used padlock probes, indicating that this represents an efficient and sensitive molecular tool for the environmental screening of Fonsecaea agents. In contrast, with isolation from the same samples using several selective methods, no agents of chromoblastomycosis were recovered.


2020 ◽  
Vol 166 ◽  
pp. 112442
Author(s):  
Ruben R.G. Soares ◽  
João C. Varela ◽  
Ujjwal Neogi ◽  
Sibel Ciftci ◽  
Manickam Ashokkumar ◽  
...  

Author(s):  
Alexandros Sountoulidis ◽  
Andreas Liontos ◽  
Hong Phuong Nguyen ◽  
Alexandra B. Firsova ◽  
Athanasios Fysikopoulos ◽  
...  

AbstractChanges in cell identities and positions underlie tissue development and disease progression. Although, single-cell mRNA sequencing (scRNA-Seq) methods rapidly generate extensive lists of cell-states, spatially resolved single-cell mapping presents a challenging task. We developed SCRINSHOT (Single Cell Resolution INSitu Hybridization On Tissues), a sensitive, multiplex RNA mapping approach. Direct hybridization of padlock probes on mRNA is followed by circularization with SplintR ligase and rolling circle amplification (RCA) of the hybridized padlock probes. Sequential detection of RCA-products using fluorophore-labeled oligonucleotides profiles thousands of cells in tissue sections. We evaluated SCRINSHOT specificity and sensitivity on murine and human organs. SCRINSHOT quantification of marker gene expression shows high correlation with published scRNA-Seq data over a broad range of gene expression levels. We demonstrate the utility of SCRISHOT by mapping the locations of abundant and rare cell types along the murine airways. The amenability, multiplexity and quantitative qualities of SCRINSHOT facilitate single cell mRNA profiling of cell-state alterations in tissues under a variety of native and experimental conditions.


2018 ◽  
Vol 64 (12) ◽  
pp. 1704-1712 ◽  
Author(s):  
Felix Neumann ◽  
Iván Hernández-Neuta ◽  
Malin Grabbe ◽  
Narayanan Madaboosi ◽  
Jan Albert ◽  
...  

Abstract BACKGROUND Influenza remains a constant threat worldwide, and WHO estimates that it affects 5% to 15% of the global population each season, with an associated 3 to 5 million severe cases and up to 500000 deaths. To limit the morbidity and the economic burden of influenza, improved diagnostic assays are needed. METHODS We developed a multiplexed assay for the detection and subtyping of seasonal influenza based on padlock probes and rolling circle amplification. The assay simultaneously targets all 8 genome segments of the 4 circulating influenza variants—A(H1N1), A(H3N2), B/Yamagata, and B/Victoria—and was combined with a prototype cartridge for inexpensive digital quantification. Characterized virus isolates and patient nasopharyngeal swabs were used for assay design and analytical validation. The diagnostic performance was assessed by blinded testing of 50 clinical samples analyzed in parallel with a commercial influenza assay, Simplexa™ Flu A/B & RSV Direct. RESULTS The assay had a detection limit of 18 viral RNA copies and achieved 100% analytical and clinical specificity for differential detection and subtyping of seasonal circulating influenza variants. The diagnostic sensitivity on the 50 clinical samples was 77.5% for detecting influenza and up to 73% for subtyping seasonal variants. CONCLUSIONS We have presented a proof-of-concept padlock probe assay combined with an inexpensive digital readout for the detection and subtyping of seasonal influenza strains A and B. The demonstrated high specificity and multiplexing capability, together with the digital quantification, established the assay as a promising diagnostic tool for seasonal influenza.


2018 ◽  
Vol 183 (4) ◽  
pp. 737-737
Author(s):  
M. J. Najafzadeh ◽  
V. A. Vicente ◽  
Peiying Feng ◽  
A. Naseri ◽  
Jiufeng Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document