scholarly journals Conserved Eukaryotic Kinase CK2 Chaperone Intrinsically Disordered Protein Interactions

2019 ◽  
Vol 86 (2) ◽  
Author(s):  
Lianhu Zhang ◽  
Dongmei Zhang ◽  
Dan Liu ◽  
Yuan Li ◽  
Hongchen Li ◽  
...  

ABSTRACT CK2, a serine/threonine (Ser/Thr) kinase present in eukaryotic cells, is known to have a vast number of substrates. We have recently shown that it localizes to nuclei and at pores between hyphal compartments in Magnaporthe oryzae. We performed a pulldown proteomics analysis of M. oryzae CK2 catalytic subunit MoCKa to detect interacting proteins. The MoCKa pulldown was enriched for septum and nucleolus proteins and intrinsically disordered proteins (IDPs) containing a CK2 phosphorylation motif that is proposed to destabilize and unfold α-helices. This points to a function for CK2 phosphorylation and corresponding phosphatase dephosphorylation in the formation of functional protein-protein aggregates and protein-RNA/DNA binding. To test this as widely as possible, we used secondary data downloaded from databases from a large range of M. oryzae experiments, as well as data for a relatively closely related plant-pathogenic fungus, Fusarium graminearum. We found that CKa expression was strongly positively correlated with Ser/Thr phosphatases, as well as with disaggregases (HSP104, YDJ1, and SSA1) and an autophagy-indicating protein (ATG8). The latter points to increased protein aggregate formation at high levels of CKa expression. Our results suggest a general role for CK2 in chaperoning aggregation and disaggregation of IDPs and their binding to proteins, DNA, and RNA. IMPORTANCE CK2 is a eukaryotic conserved kinase enzyme complex that phosphorylates proteins. CK2 is known to phosphorylate a large number of proteins and is constitutively active, and thus a “normal” role for a kinase in a signaling cascade might not be the case for CK2. Previous results on localization and indications from the literature point to a function for CK2 phosphorylation in shaping and folding of proteins, especially intrinsically disordered proteins, which constitute about 30% of eukaryotic proteins. We used pulldown of interacting proteins and data downloaded from a large range of transcriptomic experiments in M. oryzae and complemented these with data downloaded from a large range of transcriptomic experiments in Fusarium graminearum. We found support for a general role for CK2 in aggregation and disaggregation of IDPs and their binding to proteins, DNA, and RNA—interactions that could explain the importance of CK2 in eukaryotic cell function and disease.

2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Tamiko Oguri ◽  
Youjeong Kwon ◽  
Jerry K. K. Woo ◽  
Gerd Prehna ◽  
Hyun Lee ◽  
...  

ABSTRACTBy screening a collection ofSalmonellamutants deleted for genes encoding small proteins of ≤60 amino acids, we identified three paralogous small genes (ymdF,STM14_1829, andyciG) required for wild-type flagellum-dependent swimming and swarming motility. TheymdF,STM14_1829, andyciGgenes encode small proteins of 55, 60, and 60 amino acid residues, respectively. A bioinformatics analysis predicted that these small proteins are intrinsically disordered proteins, and circular dichroism analysis of purified recombinant proteins confirmed that all three proteins are unstructured in solution. A mutant deleted for STM14_1829 showed the most severe motility defect, indicating that among the three paralogs, STM14_1829 is a key protein required for wild-type motility. We determined that relative to the wild type, the expression of the flagellin protein FliC is lower in the ΔSTM14_1829mutant due to the downregulation of theflhDCoperon encoding the FlhDC master regulator. By comparing the gene expression profiles between the wild-type and ΔSTM14_1829strains via RNA sequencing, we found that the gene encoding the response regulator PhoP is upregulated in the ΔSTM14_1829mutant, suggesting the indirect repression of theflhDCoperon by the activated PhoP. Homologs of STM14_1829 are conserved in a wide range of bacteria, includingEscherichia coliandPseudomonas aeruginosa. We showed that the inactivation of STM14_1829 homologs inE. coliandP. aeruginosaalso alters motility, suggesting that this family of small intrinsically disordered proteins may play a role in the cellular pathway(s) that affects motility.IMPORTANCEThis study reports the identification of a novel family of small intrinsically disordered proteins that are conserved in a wide range of flagellated and nonflagellated bacteria. Although this study identifies the role of these small proteins in the scope of flagellum-dependent motility inSalmonella, they likely play larger roles in a more conserved cellular pathway(s) that indirectly affects flagellum expression in the case of motile bacteria. Small intrinsically disordered proteins have not been well characterized in prokaryotes, and the results of our study provide a basis for their detailed functional characterization.


2019 ◽  
Vol 63 (1) ◽  
pp. 147-156 ◽  
Author(s):  
Matthew Watson ◽  
Katherine Stott

Abstract Chromatin comprises proteins, DNA and RNA, and its function is to condense and package the genome in a way that allows the necessary transactions such as transcription, replication and repair to occur in a highly organised and regulated manner. The packaging of chromatin is often thought of in a hierarchical fashion starting from the most basic unit of DNA packaging, the nucleosome, to the condensation of nucleosomal ‘beads on a string’ by linker histones to form the 30-nm fibre and eventually large chromatin domains. However, a picture of a more heterogeneous, dynamic and liquid-like assembly is emerging, in which intrinsically disordered proteins (IDPs) and proteins containing intrinsically disordered regions (IDRs) play a central role. Disorder features at all levels of chromatin organisation, from the histone tails, which are sites of extensive post-translational modification (PTM) that change the fate of the underlying genomic information, right through to transcription hubs, and the recently elucidated roles of IDPs and IDRs in the condensation of large regions of the genome through liquid–liquid phase separation.


2019 ◽  
Author(s):  
Lianhu Zhang ◽  
Dongmei Zhang ◽  
Dan Liu ◽  
Yuan Li ◽  
Hongchen Li ◽  
...  

ABSTRACTCK2, a serine/threonine (S/T) kinase present in eukaryotic cells is known to have a vast number of substrates. We have recently shown that it localizes to nuclei and at pores between hyphal compartments in M. oryzae. We performed a pulldown-proteomics of M. oryzae CK2 catalytic subunit MoCKa to detect interacting proteins. The MoCKa pulldown was enriched for septa and nucleoli proteins and intrinsically disordered proteins (IDPs) containing a CK2 phosphorylation motif proposed to destabilize and unfold alpha helixes. This points to a function for CK2 phosphorylation and corresponding phosphatase dephosphorylation in the formation of functional protein-protein aggregates and protein-RNA/DNA binding. To test this as widely as possible we used secondary data downloaded from databases from a large range of M. oryzae experiments and also for a relatively closely related plant pathogenic fungus, Fusarium graminearum. We found that CKa expression was strongly positively correlated with S/T phosphatases as well as with disaggregase (HSP104, YDJ1, SSA1) and an autophagy indicating protein (ATG8). The latter points to increased protein aggregate formation at high levels of CKa expression. Our results suggest a general role for CK2 in aggregation and disaggregation of IDPs and their binding to proteins, DNA and RNA interactions.


2019 ◽  
Author(s):  
Ruchi Lohia ◽  
Reza Salari ◽  
Grace Brannigan

<div>The role of electrostatic interactions and mutations that change charge states in intrinsically disordered proteins (IDPs) is well-established, but many disease-associated mutations in IDPs are charge-neutral. The Val66Met single nucleotide polymorphism (SNP) encodes a hydrophobic-to-hydrophobic mutation at the midpoint of the prodomain of precursor brain-derived neurotrophic factor (BDNF), one of the earliest SNPs to be associated with neuropsychiatric disorders, for which the underlying molecular mechanism is unknown. Here we report on over 250 μs of fully-atomistic, explicit solvent, temperature replica exchange molecular dynamics simulations of the 91 residue BDNF prodomain, for both the V66 and M66 sequence.</div><div>The simulations were able to correctly reproduce the location of both local and non-local secondary changes due to the Val66Met mutation when compared with NMR spectroscopy. We find that the local structure change is mediated via entropic and sequence specific effects. We show that the highly disordered prodomain can be meaningfully divided into domains based on sequence alone. Monte Carlo simulations of a self-excluding heterogeneous polymer, with monomers representing each domain, suggest the sequence would be effectively segmented by the long, highly disordered polyampholyte near the sequence midpoint. This is qualitatively consistent with observed interdomain contacts within the BDNF prodomain, although contacts between the two segments are enriched relative to the self-excluding polymer. The Val66Met mutation increases interactions across the boundary between the two segments, due in part to a specific Met-Met interaction with a Methionine in the other segment. This effect propagates to cause the non-local change in secondary structure around the second methionine, previously observed in NMR. The effect is not mediated simply via changes in inter-domain contacts but is also dependent on secondary structure formation around residue 66, indicating a mechanism for secondary structure coupling in disordered proteins. </div>


Sign in / Sign up

Export Citation Format

Share Document