scholarly journals Characterization of Protistan Assemblages in the Ross Sea, Antarctica, by Denaturing Gradient Gel Electrophoresis

2010 ◽  
Vol 76 (22) ◽  
pp. 7671-7671
Author(s):  
Rebecca J. Gast ◽  
Mark R. Dennett ◽  
David A. Caron
2004 ◽  
Vol 70 (4) ◽  
pp. 2028-2037 ◽  
Author(s):  
Rebecca J. Gast ◽  
Mark R. Dennett ◽  
David A. Caron

ABSTRACT The diversity of protistan assemblages has traditionally been studied using microscopy and morphological characterization, but these methods are often inadequate for ecological studies of these communities because most small protists inherently lack adequate taxonomic characters to facilitate their identification at the species level and many protistan species also do not preserve well. We have therefore used a culture-independent approach (denaturing gradient gel electrophoresis [DGGE]) to obtain an assessment of the genetic composition and distribution of protists within different microhabitats (seawater, meltwater or slush on sea-ice floes, and ice) of the Ross Sea, Antarctica. Samples of the same type (e.g., water) shared more of the same bands than samples of different types (e.g., ice versus water), despite being collected from different sites. These findings imply that samples from the same environment have a similar protistan species composition and that the type of microenvironment significantly influences the protistan species composition of these Antarctic assemblages. It should be noted that a large number of bands among the samples within each microhabitat were distinct, indicating the potential presence of significant genetic diversity within each microenvironment. Sequence analysis of selected DGGE bands revealed sequences that represent diatoms, dinoflagellates, ciliates, flagellates, and several unidentified eukaryotes.


2003 ◽  
Vol 69 (11) ◽  
pp. 6380-6385 ◽  
Author(s):  
R. Temmerman ◽  
L. Masco ◽  
T. Vanhoutte ◽  
G. Huys ◽  
J. Swings

ABSTRACT The taxonomic characterization of a bacterial community is difficult to combine with the monitoring of its temporal changes. None of the currently available identification techniques are able to visualize a “complete” community, whereas techniques designed for analyzing bacterial ecosystems generally display limited or labor-intensive identification potential. This paper describes the optimization and validation of a nested-PCR-denaturing gradient gel electrophoresis (DGGE) approach for the species-specific analysis of bifidobacterial communities from any ecosystem. The method comprises a Bifidobacterium-specific PCR step, followed by purification of the amplicons that serve as template DNA in a second PCR step that amplifies the V3 and V6-V8 regions of the 16S rRNA gene. A mix of both amplicons is analyzed on a DGGE gel, after which the band positions are compared with a previously constructed database of reference strains. The method was validated through the analysis of four artificial mixtures, mimicking the possible bifidobacterial microbiota of the human and chicken intestine, a rumen, and the environment, and of two fecal samples. Except for the species Bifidobacterium coryneforme and B. indicum, all currently known bifidobacteria originating from various ecosystems can be identified in a highly reproducible manner. Because no further cloning and sequencing of the DGGE bands is necessary, this nested-PCR-DGGE technique can be completed within a 24-h span, allowing the species-specific monitoring of temporal changes in the bifidobacterial community.


BioTechniques ◽  
1998 ◽  
Vol 25 (2) ◽  
pp. 244-250 ◽  
Author(s):  
P. thor Straten ◽  
A. Barfoed ◽  
T. Seremet ◽  
I. Saeterdal ◽  
J. Zeuthen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document