scholarly journals Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron.

1992 ◽  
Vol 58 (5) ◽  
pp. 1423-1428 ◽  
Author(s):  
D B Johnson ◽  
M A Ghauri ◽  
M F Said
2003 ◽  
Vol 69 (5) ◽  
pp. 2906-2913 ◽  
Author(s):  
K. J. Edwards ◽  
D. R. Rogers ◽  
C. O. Wirsen ◽  
T. M. McCollom

ABSTRACT We report the isolation and physiological characterization of novel, psychrophilic, iron-oxidizing bacteria (FeOB) from low-temperature weathering habitats in the vicinity of the Juan de Fuca deep-sea hydrothermal area. The FeOB were cultured from the surfaces of weathered rock and metalliferous sediments. They are capable of growth on a variety of natural and synthetic solid rock and mineral substrates, such as pyrite (FeS2), basalt glass (∼10 wt% FeO), and siderite (FeCO3), as their sole energy source, as well as numerous aqueous Fe substrates. Growth temperature characteristics correspond to the in situ environmental conditions of sample origin; the FeOB grow optimally at 3 to 10°C and at generation times ranging from 57 to 74 h. They are obligate chemolithoautotrophs and grow optimally under microaerobic conditions in the presence of an oxygen gradient or anaerobically in the presence of nitrate. None of the strains are capable of using any organic or alternate inorganic substrates tested. The bacteria are phylogenetically diverse and have no close Fe-oxidizing or autotrophic relatives represented in pure culture. One group of isolates are γ-Proteobacteria most closely related to the heterotrophic bacterium Marinobacter aquaeolei (87 to 94% sequence similarity). A second group of isolates are α-Proteobacteria most closely related to the deep-sea heterotrophic bacterium Hyphomonas jannaschiana (81 to 89% sequence similarity). This study provides further evidence for the evolutionarily widespread capacity for Fe oxidation among bacteria and suggests that FeOB may play an unrecognized geomicrobiological role in rock weathering in the deep sea.


2013 ◽  
Vol 825 ◽  
pp. 406-409
Author(s):  
Akemi Matsubara ◽  
Jasmin E. Hurtado

Mining industry is a source of wealth but also of environmental pollution in Peru. In this study 12 colonies of actinomycetes were isolated in acidic cultures from mineral ores and concentrates from mines of the Peruvian highlands. The isolates were characterized phenotypically by microscopy and growth at different conditions as pH tolerance, temperature, and sodium chloride, heavy metals resistance; ferrous iron and thiosulfate oxidation. All isolates were identified as actinomycetes based on their cultural and spore characteristics. Most of the isolates were able to grow at 8 - 45°C and pH 4 - 11. 60% of isolates grew at 10% NaCl but none of them growth at 13%. Iron oxidation was shown by 60% of isolates at pH 4, but only 25% were able to oxidize iron at pH 2. Thiosulfate oxidation was not detected in any isolate. Most of the isolates showed capacity to grow in medium with 200 ppm of Pb, Fe, Zn and 100 ppm of Cu. All of the physiological characteristics found in this work indicate the potential of these isolates as source for bioremediation and bioleaching.


2000 ◽  
Vol 31 (2) ◽  
pp. 149-149 ◽  
Author(s):  
T Tozaki ◽  
H Kakoi ◽  
S Mashima ◽  
K Hirota ◽  
T Hasegawa ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
B Tóth ◽  
N Kúsz ◽  
A Csorba ◽  
T Kurtán ◽  
J Hohmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document