scholarly journals Fluorescence In Situ Hybridization Using 16S rRNA-Targeted Oligonucleotides Reveals Localization of Methanogens and Selected Uncultured Bacteria in Mesophilic and Thermophilic Sludge Granules

1999 ◽  
Vol 65 (3) ◽  
pp. 1280-1288 ◽  
Author(s):  
Yuji Sekiguchi ◽  
Yoichi Kamagata ◽  
Kazunori Nakamura ◽  
Akiyoshi Ohashi ◽  
Hideki Harada

ABSTRACT 16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was used to elucidate the spatial distribution of microbes within two types of methanogenic granular sludge, mesophilic (35°C) and thermophilic (55°C), in upflow anaerobic sludge blanket reactors fed with sucrose-, acetate-, and propionate-based artificial wastewater. The spatial organization of the microbes was visualized in thin sections of the granules by using fluorescent oligonucleotide probes specific to several phylogenetic groups of microbes. In situ hybridization with archaeal- and bacterial-domain probes within granule sections clearly showed that both mesophilic and thermophilic granules had layered structures and that the outer layer harbored mainly bacterial cells while the inner layer consisted mainly of archaeal cells. Methanosaeta-,Methanobacterium-, Methanospirillum-, andMethanosarcina-like cells were detected with oligonucleotide probes specific for the different groups of methanogens, and they were found to be localized inside the granules, in both types of which dominant methanogens were members of the genusMethanosaeta. For specific detection of bacteria which were previously detected by whole-microbial-community 16S ribosomal DNA (rDNA)-cloning analysis (Y. Sekiguchi, Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura, Microbiology 144:2655–2665, 1998) we designed probes specific for clonal 16S rDNAs related to unidentified green nonsulfur bacteria and clones related toSyntrophobacter species. The probe designed for the cluster closely related to Syntrophobacter species hybridized with coccoid cells in the inner layer of the mesophilic granule sections. The probe for the unidentified bacteria which were clustered with the green nonsulfur bacteria detected filamentous cells in the outermost layer of the thermophilic sludge granule sections. These results revealed the spatial organizations of methanogens and uncultivated bacteria and their in situ morphologies and metabolic functions in both mesophilic and thermophilic granular sludges.

2000 ◽  
Vol 66 (8) ◽  
pp. 3608-3615 ◽  
Author(s):  
Hiroyuki Imachi ◽  
Yuji Sekiguchi ◽  
Yoichi Kamagata ◽  
Akiyoshi Ohashi ◽  
Hideki Harada

ABSTRACT The thermophilic, anaerobic, propionate-oxidizing bacterial populations present in the methanogenic granular sludge in a thermophilic (55°C) upflow anaerobic sludge blanket reactor were studied by cultivation and in situ hybridization analysis. For isolation of propionate-degrading microbes, primary enrichment was made with propionate as the sole energy source at 55°C. After several attempts to purify the microbes, a thermophilic, syntrophic, propionate-oxidizing bacterium, designated strain SI, was isolated in both pure culture and coculture with Methanobacterium thermoautotrophicum. Under thermophilic (55°C) conditions, strain SI oxidized propionate, ethanol, and lactate in coculture withM. thermoautotrophicum. In pure culture, the isolate was found to ferment pyruvate. 16S ribosomal DNA sequence analysis revealed that the strain was relatively close to members of the genusDesulfotomaculum, but it was only distantly related to any known species. To elucidate the abundance and spatial distribution of organisms of the strain SI type within the sludge granules, a 16S rRNA-targeted oligonucleotide probe specific for strain SI was developed and applied to thin sections of the granules. Fluorescence in situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells were present in the middle and inner layers of the thermophilic granule sections and that they formed close associations with hydrogenotrophic methanogens. They accounted for approximately 1.1% of the total cells in the sludge. These results demonstrated that strain SI was one of the significant populations in the granular sludge and that it was responsible for propionate oxidation in the methanogenic granular sludge in the reactor.


2002 ◽  
Vol 45 (10) ◽  
pp. 19-25 ◽  
Author(s):  
Y. Sekiguchi ◽  
Y. Kamagata ◽  
A. Ohashi ◽  
H. Harada

The microbial community structure of mesophilic (35°C) and thermophilic (55°C) methanogenic granular sludges was surveyed by using both cultivation-independent molecular approach and conventional cultivation technique in order to address the fundamental questions on the microbial populations, i.e. who are present, where they are located, and what they are doing there. To elucidate the microbial constituents within both sludges, we first constructed 16S ribosomal DNA clone libraries, and partial sequencing of the clones was conducted for phylogenetic analysis. In this experiment, we found a number of unidentifiable clones within the domain Bacteria as well as clones that were closely related with 16S rDNAs of cultured microbes. The unidentifiable clones accounted for approximately 60–70% of the total clones in both mesophilic and thermophilic libraries. 16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was subsequently employed to examine where the uncultured populations were located within sludge granules. Spatial organization of uncultured microbes was visualized in thin-sections of both types of granules using fluorescent oligonucleotide probes, which were designed based on the clone sequences of certain novel clusters. This resulted in the detection of two types of uncultured cells in specific locations inside the granules. Finally, the goal-directed conventional cultivation technique was employed to recover such uncultured anaerobes and uncover their physiology and functions. In this approach, a total of five new species of thermophilic microorganisms were isolated, including several types of syntrophs and a novel sugar-fermenting bacterium. In the previous molecular approaches, all of these isolates were suggested to be significant populations within thermophilic granular sludge, hence obtaining these isolates in pure culture decreased the fraction of unknown clones in the previous thermophilic clone library from 70% to 40%. In conclusion, these approaches successfully revealed biodiversity and spatial organization of microbes of interest in sludge granules, and enlarged the fundamental knowledge of microbial constituents functioning as significant populations in the UASB processes.


2015 ◽  
Vol 61 (6) ◽  
pp. 417-428 ◽  
Author(s):  
Edith R. Valle ◽  
Gemma Henderson ◽  
Peter H. Janssen ◽  
Faith Cox ◽  
Trevor W. Alexander ◽  
...  

In this study, methanogen-specific coenzyme F420autofluorescence and confocal laser scanning microscopy were used to identify rumen methanogens and define their spatial distribution in free-living, biofilm-, and protozoa-associated microenvironments. Fluorescence in situ hybridization (FISH) with temperature-controlled hybridization was used in an attempt to describe methanogen diversity. A heat pretreatment (65 °C, 1 h) was found to be a noninvasive method to increase probe access to methanogen RNA targets. Despite efforts to optimize FISH, 16S rRNA methanogen-specific probes, including Arch915, bound to some cells that lacked F420, possibly identifying uncharacterized Methanomassiliicoccales or reflecting nonspecific binding to other members of the rumen bacterial community. A probe targeting RNA from the methanogenesis-specific methyl coenzyme M reductase (mcr) gene was shown to detect cultured Methanosarcina cells with signal intensities comparable to those of 16S rRNA probes. However, the probe failed to hybridize with the majority of F420-emitting rumen methanogens, possibly because of differences in cell wall permeability among methanogen species. Methanogens were shown to integrate into microbial biofilms and to exist as ecto- and endosymbionts with rumen protozoa. Characterizing rumen methanogens and defining their spatial distribution may provide insight into mitigation strategies for ruminal methanogenesis.


1997 ◽  
Vol 15 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Karsten Rodenacker ◽  
Michaela Aubele ◽  
Peter Hutzler ◽  
P. S. Umesh Adiga

In molecular pathology numerical chromosome aberrations have been found to be decisive for the prognosis of malignancy in tumours. The existence of such aberrations can be detected by interphase fluorescence in situ hybridization (FISH). The gain or loss of certain base sequences in the desoxyribonucleic acid (DNA) can be estimated by counting the number of FISH signalsper cell nucleus. The quantitative evaluation of such events is a necessary condition for a prospective use in diagnostic pathology. To avoid occlusions of signals, the cell nucleus has to be analyzed in three dimensions. Confocal laser scanning microscopy is the means to obtain series of optical thin sections from fluorescence stained or marked material to fulfill the conditions mentioned above. A graphical user interface (GUI) to a software package for display, inspection, count and (semi‐)automatic analysis of 3‐D images for pathologists is outlined including the underlying methods of 3‐D image interaction and segmentation developed. The preparative methods are briefly described. Main emphasis is given to the methodical questions of computer‐aided analysis of large 3‐D image data sets for pathologists. Several automated analysis steps can be performed for segmentation and succeeding quantification. However tumour material is in contrast to isolated or cultured cells even for visual inspection, a difficult material. For the present a fully automated digital image analysis of 3‐D data is not in sight. A semi‐automatic segmentation method is thus presented here.


1998 ◽  
Vol 36 (9) ◽  
pp. 2557-2564 ◽  
Author(s):  
Karlheinz Trebesius ◽  
Dag Harmsen ◽  
Alexander Rakin ◽  
Jochen Schmelz ◽  
Jürgen Heesemann

In this report, we present details of two rapid molecular detection techniques based on 16S and 23S rRNA sequence data to identify and differentiate Yersinia species from clinical and environmental sources. Near-full-length 16S rRNA gene (rDNA) sequences for three different Yersinia species and partial 23S rDNA sequences for three Y. pestis and three Y. pseudotuberculosis strains were determined. While 16S rDNA sequences of Y. pestis and Y. pseudotuberculosis were found to be identical, one base difference was identified within a highly variable region of 23S rDNA. The rDNA sequences were used to develop primers and fluorescently tagged oligonucleotide probes suitable for differential detection ofYersinia species by PCR and in situ hybridization, respectively. As few as 102 Yersinia cells per ml could be detected by PCR with a seminested approach. Amplification with a subgenus-specific primer pair followed by a second PCR allowed differentiation of Y. enterocolitica biogroup 1B from biogroups 2 to 5 or from other pathogenic Yersinia species. Moreover, a set of oligonucleotide probes suitable for rapid (3-h) in situ detection and differentiation of the three pathogenicYersinia species (in particular Y. pestis andY. pseudotuberculosis) was developed. The applicability of this technique was demonstrated by detection of Y. pestisand Y. pseudotuberculosis in spiked throat and stool samples, respectively. These probes were also capable of identifyingY. enterocolitica within cryosections of experimentally infected mouse tissue by the use of confocal laser scanning microscopy.


2002 ◽  
Vol 68 (8) ◽  
pp. 4035-4043 ◽  
Author(s):  
M. Lanthier ◽  
B. Tartakovsky ◽  
R. Villemur ◽  
G. DeLuca ◽  
S. R. Guiot

ABSTRACT Oligonucleotide probes were used to study the structure of anaerobic granular biofilm originating from a pentachlorophenol-fed upflow anaerobic sludge bed reactor augmented with Desulfitobacterium frappieri PCP-1. Fluorescence in situ hybridization demonstrated successful colonization of anaerobic granules by strain PCP-1. Scattered microcolonies of strain PCP-1 were detected on the biofilm surface after 3 weeks of reactor operation, and a dense outer layer of strain PCP-1 was observed after 9 weeks. Hybridization with probes specific for Eubacteria and Archaea probes showed that Eubacteria predominantly colonized the outer layer, while Archaea were observed in the granule interior. Mathematical simulations showed a distribution similar to that observed experimentally when using a specific growth rate of 2.2 day−1 and a low bacterial diffusion of 10−7 dm2 day−1. Also, the simulations showed that strain PCP-1 proliferation in the outer biofilm layer provided excellent protection of the biofilm from pentachlorophenol toxicity.


1991 ◽  
Vol 39 (11) ◽  
pp. 1495-1506 ◽  
Author(s):  
P M Motte ◽  
R Loppes ◽  
M Menager ◽  
R Deltour

We report the 3-D arrangement of DNA within the nucleolar subcomponents from two evolutionary distant higher plants, Zea mays and Sinapis alba. These species are particularly convenient to study the spatial organization of plant intranucleolar DNA, since their nucleoli have been previously reconstructed in 3-D from serial ultra-thin sections. We used the osmium ammine-B complex (a specific DNA stain) on thick sections of Lowicryl-embedded root fragments. Immunocytochemical techniques using anti-DNA antibodies and rDNA/rDNA in situ hybridization were also applied on ultra-thin sections. We showed on tilted images that the OA-B stains DNA throughout the whole thickness of the section. In addition, very low quantities of cytoplasmic DNA were stained by this complex, which is now the best DNA stain used in electron microscopy. Within the nucleoli the DNA was localized in the fibrillar centers, where large clumps of dense chromatin were also visible. In the two plant species intranucleolar chromatin forms a complex network with strands partially linked to chromosomal nucleolar-organizing regions identified by in situ hybridization. This study describes for the first time the spatial arrangement of the intranucleolar chromatin in nucleoli of higher plants using high-resolution techniques.


2001 ◽  
Vol 67 (11) ◽  
pp. 5273-5284 ◽  
Author(s):  
Holger Daims ◽  
Jeppe L. Nielsen ◽  
Per H. Nielsen ◽  
Karl-Heinz Schleifer ◽  
Michael Wagner

ABSTRACT Uncultivated Nitrospira-like bacteria in different biofilm and activated-sludge samples were investigated by cultivation-independent molecular approaches. Initially, the phylogenetic affiliation of Nitrospira-like bacteria in a nitrifying biofilm was determined by 16S rRNA gene sequence analysis. Subsequently, a phylogenetic consensus tree of theNitrospira phylum including all publicly available sequences was constructed. This analysis revealed that the genusNitrospira consists of at least four distinct sublineages. Based on these data, two 16S rRNA-directed oligonucleotide probes specific for the phylum and genus Nitrospira, respectively, were developed and evaluated for suitability for fluorescence in situ hybridization (FISH). The probes were used to investigate the in situ architecture of cell aggregates ofNitrospira-like nitrite oxidizers in wastewater treatment plants by FISH, confocal laser scanning microscopy, and computer-aided three-dimensional visualization. Cavities and a network of cell-free channels inside the Nitrospiramicrocolonies were detected that were water permeable, as demonstrated by fluorescein staining. The uptake of different carbon sources byNitrospira-like bacteria within their natural habitat under different incubation conditions was studied by combined FISH and microautoradiography. Under aerobic conditions, theNitrospira-like bacteria in bioreactor samples took up inorganic carbon (as HCO3 − or as CO2) and pyruvate but not acetate, butyrate, and propionate, suggesting that these bacteria can grow mixotrophically in the presence of pyruvate. In contrast, no uptake by theNitrospira-like bacteria of any of the carbon sources tested was observed under anoxic or anaerobic conditions.


Sign in / Sign up

Export Citation Format

Share Document